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Abstract
Numerous optimization algorithms have been proposed to solve computing and engineering
problems involving optimization of a set of real parameters. A global continuous optimiza-
tion problem is generally NP-hard which poses a difficult and complex task to find the
true global optimum solution. In this context, popular metaheuristic approaches based on
a population of simple structures have emerged during the recent years. One of them is the
well-known Particle Swarm Optimization (PSO) algorithm which is a non-deterministic,
randomized, nature-inspired metaheuristic specialized in solving continuous black-box
optimization problems. PSO has been used by many experts of different domains of science,
as the algorithm has the potential to solve complex problems with simple mathematical
formulations. Although this method is widely used in real-world applications, there are
also intrinsic drawbacks embedded in the algorithm’s structure. Some of them are known
to all, such as the search mechanism wastes computational efforts due to random walks,
the convergence process is usually slow, some points are revisited during the search process,
prominent areas are not properly investigated, the algorithm is prone to premature con-
vergence and the algorithm’s parameters are problem-dependent. In this thesis, the author
presents enhancements to the original PSO by incorporating deterministic characteristics
and rotation matrices. A semi-autonomous particle swarm optimizer, termed SAPSO,
which uses gradient-based information and diversity control, is provided. This work also
investigates the influence of rotation and information exchange on the performance of
PSO. Four PSO versions which include the presence or absence of rotation variance, and
the fast or late information exchange among particles are investigated. As final outcome
of this thesis, an algorithm, coined as Invariant SAPSO (ISAPSO), is reported to improve
the capability of SAPSO algorithm by embedding new search mechanisms. The numerical
simulations revealed statistical significant results when ISAPSO is evaluated on benchmark
optimization problems and compared to other related PSO-based algorithms. No statisti-
cally significant results were observed between rotation variance or invariance, whereas
the fast information exchange outperformed the late information exchange. In addition, a
rigorous methodology based on a reliable number of executions and statistical hypothesis
tests is conducted to strengthen the discussions.

Key-words: Global Continuous Optimization, Particle Swarm Optimization, Rotation
Variance, Deterministic Algorithm, Metaheuristic Approach.





Resumo
Muitos algoritmos de otimização têm sido propostos para resolver problemas da engenharia
e da computação que envolvem a otimização de um conjunto de parâmetros reais. Um pro-
blema de otimização contínua é geralmente classificado como NP-difícil, o que o torna uma
tarefa complexa de encontrar a solução ótima global. Neste contexto, abordagens populares
de metaheurísticas baseadas em população de estruturas simples têm surgido durante os
últimos anos. Uma delas é o algoritmo de Otimização por Enxame de Partículas (PSO) que
é não determinístico, randômico, inspirado na natureza e especializado em resolver proble-
mas de otimização “caixa-preta”. PSO tem sido usado por muitos especialistas de diferentes
áreas da ciência, uma vez que o algoritmo tem potencial para resolver problemas complexos
por meio de formulações matemáticas simples. Embora este método seja amplamente
utilizado em aplicações reais, existem desvantagens intrínsecas embarcadas na estrutura
do algoritmo. Algumas delas são bem conhecidas, a citar o mecanismo de busca desperdiça
tempo computacional devido ao random walk, o processo de convergência é geralmente
lento, alguns pontos são revisitos durante o processo de busca, áreas promissoras não são
apropriadamente investigadas, o algoritmo está propenso a convergência prematura e os
parâmetros do algoritmo são dependentes do problema. Nesta tese, o autor apresenta
melhorias para o PSO original através da incorporação de características determinísticas e
matrizes de rotação, além de realizar análises empíricas sobre rotação e troca de informação
entre as partículas. Um otimizador por enxame de partículas semi-autônomas, cunhado
de SAPSO, que usa informações de gradiente e controle de diversidade é fornecido. Esta
tese também investiga a influência da rotação e a troca de informação entre partículas
no desempenho do PSO. Quatro versões do PSO que incluem a presença e ausência da
propriedade rotation variance, além da troca rápida e lenta de informações entre partículas
são investigados. Como produto final desta tese, um algoritmo cunhado de ISAPSO é
desenvolvido com o objetivo de fortalecer a capacidade do algoritmo SAPSO incorporando
novos mecanismos de busca. As simulações numéricas revelaram resultados convincentes
quando o ISAPSO é avaliado em um conjunto de problemas de otimização e comparados
com outros algoritmos PSO. Não foram observados resultados estatisticamente significantes
na comparação entre as propriedades rotation variance ou invariance, enquanto que a
troca rápida de informação superou a troca lenta de informação entre as partículas. Além
disso, uma metodologia rigorosa baseado em um número confiável de execuções e testes de
hipóteses estatísticas é conduzida para fortalecer as discussões.

Palavras-chave: Otimização Global Contínua, Otimização por Enxame de Partículas,
Variação de Rotação, Algoritmo Determinístico, Abordagem Metaheurística.
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1 Introduction

Stochastic search methods, such as Particle swarm optimization (PSO) and Genetic
algorithm (GA), are well-known population-based metaheuristics to perform global search
(KENNEDY; EBERHART, 1995; GOLDBERG, 1989). These algorithms have been used
throughout the years as multidisciplinary methods to face convex, non-convex, unimodal,
multimodal, unidimensional and multidimensional optimization problems. The practitioners
resort to stochastic search method when deterministic algorithms are not suitable to deal
with the optimization problem. Most of the computing and engineering optimization
problems are NP-hard, and for this reason the scholars must check the whole continuous
search space to ensure that a result is not suboptimal, and this task obviously would lead
to a search with prohibitive time. In this scenario, looking for a solution at least near to
the global optimum is plausible. This is where the stochastic search methods are most
suitable.

The literature of PSO is eclectic in terms of applying the metaheuristic in different
domains, starting with toy- or puzzle-like problems, such as n-queen (AHMED et al.,
2012; WANG; LIN; YANG, 2012), sudoku (MORAGLIO; TOGELIUS, 2007; HEREFORD;
GERLACH, 2008), chess (DURO; OLIVEIRA, 2008); passing through industries-like
problems, such as processing of ore dressing plant (HUANG et al., 2007), long-term
production scheduling problem of the open pit mines (KHAN; NIEMANN-DELIUS,
2015), structural health monitoring applied in the assessment of bridges (SANTOS et al.,
2016); also, as tool for training a machine learning algorithm, such as feed-forward neural
networks (VILOVIĆ; BURUM; MILIĆ, 2009; CH; MATHUR, 2012; AKSU; COBAN, 2013)
or hybridizes with other evolutionary algorithms like GAs (JUANG, 2004; BENTO et
al., 2013; XU et al., 2015), ant-colony (DUAN; YING, 2009), differential evolution (HAO;
GUO; HUANG, 2007), among others. This vast application domain of PSO is present in the
literature of global optimization mainly because of its simplicity regarding its development
and fundamental formulation, addressing two types of application domains: discrete
binary (KENNEDY, 1997a) and continuous codifications (KENNEDY; EBERHART, 1995;
EBERHART; KENNEDY, 1995). Therefore, pushing forward the frontier of the PSO
knowledge can contribute to the area of swarm intelligence.

Such algorithm’s popularity has brought much attention to the theoretical issues
about the fundamental operation of PSO. To name a few examples: Ozcan and Mohan
analysed a simplified particle system to determine the trajectory of an isolated particle in
one dimension (OZCAN; MOHAN, 1998) and multidimensional search space (OZCAN
et al., 1999); Clerc and Kennedy provided an algebraic and analytical view of particle’s
trajectory to understand how the swarm searches the problem space (CLERC; KENNEDY,
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2002); Van Den Bergh and Engelbrecht investigated particle’s trajectory for general swarms,
including inertia term (BERGH; ENGELBRECHT, 2006), and they also provided a formal
mathematical proof that swarm converges to a stable point; Janson and Middendorf
showed that particles have a clear bias in their movement direction which depends on the
direction of the coordinate axes (JANSON; MIDDENDORF, 2007); Poli introduced a
method to exactly determine the moments of a PSO sampling distribution and explained
how they change over any number of iterations (POLI, 2009); Spears et al. showed that
the rotation variance is related to the concentration of particles along lines parallel to the
coordinate axes (SPEARS; GREEN; SPEARS, 2010); Schmitt and Wanka pointed out
possible reasons related to the swarm stagnation at non-optimal points and the particles
predilection of walking parallel to the axes (SCHMITT; WANKA, 2013b; SCHMITT;
WANKA, 2013a). Although great strides have been discussed throughout the past years,
there are still enhancements to propose in this field of study, such as increasing the search
potential of PSO with deterministic steps and also providing mathematical structures to
understand crucial behaviors of particles during the search process.

The deterministic optimization algorithms far outweigh the non-deterministic
ones on unimodal functions. However, classical algorithms, such as gradient descent and
Newton’s method, are strongly dependent on the quality of the initial guess and easily
get trapped into local optima of multimodal functions (HORST; TUY, 1996). On the
contrary, non-deterministic optimization methods, such as PSO and GAs perform global
optimization, however they waste computational time wandering the search space as
a result of the random walk influence. This phenomenon also contributes significantly
to the exploration of areas already visited, wasting computational efforts re-evaluating
previously observed candidate solutions. To the best of the author’s knowledge, there are
no stochastic algorithms with finite memory that store the points from the continuous
search space already evaluated during the search process1. Furthermore, there are no
embedded mechanisms of exploiting specific areas of the search space efficiently during the
early iterations. Often, the convergence process is slow, some points are revisited during
the search process, a prominent area of the search space is not properly investigated by
the random walk mechanism, and the algorithms are prone to premature convergence,
specially when they are highly dependent of their initial parameters.

The thesis provides enhancements to the PSO-based algorithms, covering some
aforementioned challenges. The main contributions of this thesis are highlighted in three
parts: a new PSO version called SAPSO, an empirical analysis of classical PSO versions, and
an improved version of SAPSO algorithm coined as ISAPSO, which is strictly rotationally
invariant under rotation of the coordinate system. The next section provides a description
about all contributions found in this thesis in a chronological order.
1 A modification in the Tabu search methodology (GLOVER, 1989; GLOVER, 1990) to work properly

in a continuous search space may handle this feature.
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1.1 Thesis contributions
A brief description of each aforementioned contribution is given in this section.

Section 1.1.1 is related to foundations of a new PSO version, termed as SAPSO, which
brings deterministic characteristics to the search process of PSO. The algorithm also
embeds a mechanism of attraction and repulsion of particles according to the diversity
value of the swarm. Section 1.1.2 outlines about the study of four classical PSO versions
on a set of multimodal optimization problems. The main focus of this analysis is to
investigate whether rotation variance and information exchange among particles affect the
performance of PSO-based algorithms. Section 1.1.3 describes a new version of SAPSO
algorithm, coined as Invariant SAPSO (ISAPSO), which reduces the computational time
to run the algorithm, removes heuristics such as bound handling and velocity clamps, and
embeds a rotation matrix to introduce a perturbation in the movement of particles.

1.1.1 A semi-autonomous particle swarm optimizer

The first contribution of the thesis is the SAPSO algorithm which uses gradient-
based information and diversity control to optimize unimodal and multimodal functions.
The main idea behind SAPSO algorithm is to reduce computational efforts of local investi-
gation and to provide a mechanism to escape from local optima. The term autonomous
means a decision that each particle must take at each iteration of the algorithm. Each parti-
cle must decide between exploit its current neighborhood through the gradient information
or to follow in the direction of the current global best position. Moreover, the term semi
places the entire population under a general rule of attraction and repulsion which is based
on the diversity value of the swarm. Therefore, the term semi-autonomous characterizes
the particles of the SAPSO algorithm. With this embryonic idea, at least two of the main
optimization challenges are faced in the roots of the proposed algorithm: 1) to properly
investigate prominent areas of the search space and 2) to avoid premature convergence.
This model of global optimization promises an upgrade on the current metaheuristic
performances.

SAPSO algorithm is further compared to a diversity-guided attractive and repulsive
PSO (ARPSO) (VESTERSTRØM; RIGET, 2002), gradient-based PSO (GPSO) (NOEL,
2012), and a diversity-guided hybrid PSO based on gradient search (DGHPSOGS) (HAN;
LIU, 2014). The ARPSO algorithm introduced the idea of diversity control along the
iterations, while the GPSO algorithm was the first to consider the gradient information
with PSO, and DGHPSOGS applied both gradient and diversity control information in a
hybrid approach. When the ideas of those algorithms are used together, they come up
with advanced results in the optimization field. The performances of the algorithms are
evaluated on a suite of test functions based on the De Jong’s benchmark optimization
problems.
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1.1.2 An empirical analysis of classical PSO versions

The empirical analyses are referred to as four PSO-based approaches: rotation
variance, rotation invariance, late information exchange, and fast information exchange.
The first two versions are related to the random variables handled by the velocity up-
date equation of particles. Rotation variance embeds two vectors of random numbers in
the cognitive and social components, while rotation invariance embodies scalar random
variables. The practical difference is about how particles move toward the cognitive and
social memories in the search space. In (WILKE; KOK; GROENWOLD, 2007a; WILKE;
KOK; GROENWOLD, 2007b), the authors show that the directional diversity is evident
in the rotation variant PSO version, whereas the rotation invariance reduces the search
distribution of particles, which in turn aggravates the probability of premature convergence.
Both rotational versions are still present in the literature, where the variant version can be
seen in (CHEN et al., 2017; LYNN; ALI; SUGANTHAN, 2018; CHEN et al., 2018; LYNN;
SUGANTHAN, 2017; ZHANG et al., 2017; YU; WANG; WANG, 2016) and the invariant
one in (ESPITIA; SOFRONY, 2018; XU; YU, 2018; TIAN; SHI, 2018; LI; CHENG, 2017;
GOU et al., 2017; CHEN et al., 2018). As far as the author know, the literature provides
no consistent distinction of when to apply one version or another.

Beyond two rotational versions of PSO algorithm, another important discussion
is about the fast and late information exchange mechanisms. Both options change how
information exchange is spread through the swarm. The former forwards the information
about the best particle’s position right after a new position that deserves exploitation is
discovered. Some examples of this implementation can be found in (MARINI; WALCZAK,
2015; BEHESHTI; SHAMSUDDIN, 2015; NOEL, 2012; ZHAN et al., 2011; TEWOLDE;
HANNA; HASKELL, 2009; LIANG et al., 2006). The latter postpones the information of
promising areas and may skip intermediate local optima discovered by isolated particles in
the same iteration, consequently leaving a more selective position for the end of the iteration.
Some works with this approach are found in (ISSA et al., 2018; KUMARI et al., 2017;
GBENGA; RAMLAN, 2016; JENSI; JIJI, 2016; BEHESHTI; SHAMSUDDIN; HASAN,
2013; ROBATI et al., 2012). A misinterpretation of the classical PSO algorithm might
be the reason for such differentiation, as this question is not clear enough in the original
papers (EBERHART; KENNEDY, 1995; KENNEDY; EBERHART, 1995; KENNEDY,
1997a; SHI; EBERHART, 1998b; SHI; EBERHART, 1998a; SHI; EBERHART, 1999).

Although there are differences, both approaches work satisfactorily. However, no
consistent justification is given about when or why to apply one instead of another. Fol-
lowing this idea, this thesis also evaluates the performance of both approaches along with
variant and invariant issues on CEC 2017 benchmark functions. Besides, the methodology
follows rigorous rules defined by Maurice Clerc (CLERC, 2012a), where different unbiased
test functions, sufficient number of executions, different statistical measures, and two sta-
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tistical hypothesis tests are considered. These principles aim to avoid the misinterpretation
of results by reducing the possibility to obtain biased results by chance. Furthermore, a
method to select a minimum number of algorithm’s execution is also provided whose law
of large numbers is the crucial motivation.

1.1.3 ISAPSO algorithm: a rotationally invariant PSO version

An improvement of SAPSO algorithm, which is named Invariant SAPSO (ISAPSO),
is proposed by this thesis as a final outcome. ISAPSO algorithm arises from the foundations
of its predecessor and also from the final outcomes on the empirical analyses of four PSO
versions described previously (Section 1.1.2). ISAPSO algorithm enhances the directional
diversity by introducing a rotation matrix in the velocity update equation. This rotation
matrix plays a role when the swarm is in the repulsion phase due to the small perturbation
in the directions of the social and gradient components. Therefore, the attraction and
repulsion mechanism makes particles susceptible to move toward prominent areas of the
search space through a different angle after each repulsion be activated. As a consequence,
one can expect a larger search distribution for each particle and the avoidance of trapping
into local minima.

Additionally, ISAPSO algorithm decreases the computational time by performing
gradient calculus only when is required. Previously, SAPSO algorithm has performed
partial derivatives every time a particle moves without considering its autonomous decision.
In the new algorithm’s version, first the particle takes the decision, and if the particle
decides to follow the gradient information, then it performs gradient calculus. Besides that,
all heuristics such as bound handling and velocity clamps were removed, which simplified
the coding. Moreover, the main parameters, such as inertia weight, social and gradient
coefficients were carefully chosen to be static and to serve as an initial guess for different
optimization problems.

A consistent mathematical proof about the rotation invariance is formulated later
where it is shown that the algorithm is strictly rotationally invariant in the attraction
phase and rotationally invariant in a stochastic sense in the repulsion phase. ISAPSO
algorithm is also evaluated on CEC 2017 benchmark functions of real parameters by
considering different statistical measures. The methodology used by the experiments also
follows the Clerc’s rules. Furthermore, two statistical hypothesis tests are applied on the
results of ISAPSO algorithm and other related PSO algorithms to evaluate the statistical
significance of their performances.
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1.2 Contextualization
Since the classical PSO algorithm was first published by Kennedy and Eberhart in

1995 (KENNEDY; EBERHART, 1995; EBERHART; KENNEDY, 1995), the field of swarm
intelligence has been increasing in last years. Many improvements were proposed, tested,
and compared in the literature through different perspectives by distinct practitioners.
Although many applications with swarm intelligence are possible in current days, much
work has been done to provide a mature metaheuristic able to be applied in such different
domains of science.

In this contextualization, one can separate works considered important in history
of PSO. Most of the proposed changes in the foundations of the algorithm are used
up today. After the first published paper in 1995, a second work (KENNEDY, 1997b)
presented a study about four models of knowledge: full, cognitive-only, social-only and
selfless. The models are related to the velocity update equation. Some empirical simulations
concluded that the social-only model (i.e., a version of the velocity update equation where
only the inertial and social components are used) contributed more when solving simple
optimization problems. Shi and Eberhart (SHI; EBERHART, 1998a) introduced a new
parameter to the velocity update equation termed as inertia weight. Numerical simulations
were performed to illustrate the impact of this parameter on the performance of PSO.
The inertia weight plays an important role of controlling the exploration and exploitation
phases. That paper was also the first one to bring the idea of linear or non-linear decreasing
of inertia weight. In the next year, the same authors (SHI; EBERHART, 1999) formalized
a linear decreasing inertia weight approach and they extensively evaluated the performance
of PSO through experimental studies on four non-linear functions well-known in the
literature. The experimental results illustrated that the PSO has the ability to quickly
converge to a local optima at the end of a run due to the utilization of a linearly decreasing
inertia weight. It was also observed that PSO may fail to find the required optima in cases
where the problem to be solved is too complicated and complex. But to some extent, this
can be overcome by employing a self-adapting strategy for adjusting the inertia weight.
This root idea was later updated and investigated by other authors (RATNAWEERA;
HALGAMUGE; WATSON, 2004; YAMAGUCHI; YASUDA, 2006; ZHAN et al., 2007;
ZHAN et al., 2009).

Still in the 90s, Maurice Clerc (CLERC, 1999) reported for the first time a constric-
tion term in the literature of PSO (later would be called constriction factor). This paper
presented a purely deterministic algorithm called Swarm & Queen, with just one equation,
one confidence coefficient, and one “memory” parameter. It was an attempt to build a
deterministic adaptive PSO. Some non-convex functions were evaluated with this method,
but a clearer investigation of the method was left for future work. Simultaneously, Eberhart
and Shi (EBERHART; SHI, 2000) were evaluating through empirical simulation both
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inertia weight and constriction factor in PSO. The authors stated that the PSO algorithm
with the constriction factor can be considered as a special case of the algorithm with
inertia weight since the three parameters (inertia weight, cognitive coefficient, and social
coefficient) are connected through the principal equations derived from the constriction
factor analysis. Finally in 2002, Clerc et al. analysed in (CLERC; KENNEDY, 2002) a
particle’s trajectory as it moves in discrete time (the algebraic view), then progresses to
the view of it in continuous time (the analytical view). These analyses led to a generalized
model of the algorithm, containing a set of coefficients to control the system’s conver-
gence tendencies. In other words, the application of constriction coefficients allows control
over the dynamical characteristics of the particle swarm, including its exploration versus
exploitation propensities.

One can affirm the discoveries of inertia weight, constriction factor, and different
proposed approaches to deal with parameter tuning have improved the quota of optimization
problems solved by PSO. Furthermore, the popularity of PSO, due to its simplicity and easy
implementation, has capillarized and leveraged in many different areas of science. In recent
years, most implementations are applications of the optimizer on popular context, such as
load balancing in cloud computing (ACHARYA; MEHTA; SAINI, 2016), evolve internal
parameters of deep learning processing layers (KHALIFA et al., 2017), load balancing
and control in 5G heterogeneous networks (SHAMI; GRACE; BURR, 2018), localization
of sensor nodes in internet of things (RAUNIYAR; ENGELSTAD; MOEN, 2018), path
planning of multi-robots in unknown environments (THABIT; MOHADES, 2019), train a
type-2 fuzzy neural networks with PSO to control quadcopters for an autonomous quality
inspection over rice farms (CAMCI et al., 2018), and control the power of the sources based
on an interlinking converter used to connect two micro grid systems in a renewable energy
system (SAAD; EL-SATTAR; MANSOUR, 2018). As seen in this section, the presence of
PSO algorithm in such distinct scenarios shows that providing new strategies to strengthen
its search process can contributes to propagate this non-deterministic approach to an even
more consolidated state of usage. In this context, this thesis is concerned about studying
the foundations of PSO algorithm, extract important information on the algorithm’s search
premises, and ultimately yielding reliable improvements to the swarm intelligence area.

1.3 Related works
In this section, the principal works strictly related to the subjects discussed by this

thesis are highlighted. The enhancements described by this thesis have narrow relations
with the following topics: diversity control of the swarm, gradient-based information,
properties of rotation variance and rotation invariance, directional diversity and rotation
matrices. These topics have great relevance to the domain of PSO algorithms due to the
features associated with them, which are discussed below.
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Any population-based metaheuristic is susceptible of suffering from the effect of
premature convergence, i.e., the elements constituting the population get stuck into a
local optima during the early iterations. This happens when the elements erroneously
believe that a promising area in the search space was discovered. In the PSO algorithm,
the only information exchanged by the particles is the global best position, i.e., the best
positioned particles with the best fitness value. This position guides the whole swarm
toward prominent areas of the search space. It is worth pointing out that the default
implementation of PSO algorithm has no mechanisms to detect a local optima or even to
escape from these pitfalls. With this in mind, the diversity controlling mechanism equips
the swarm with a valuable information about the crowding and dispersion of particles
throughout iterations.

The diversity controlling approach was first proposed in (VESTERSTRØM; RIGET,
2002). This work presented a diversity-guided particle swarm optimizer, termed as ARPSO
algorithm. ARPSO implements the idea of diversity control over the swarm, which is an
important feedback extracted from the swarm along the iterations of the algorithm. The
authors of this paper used this information to decide between two designs called attraction
and repulsion. The former is a state where the particles follow the global tendency of
the swarm, i.e., the global best particle. The latter is a state where the particles follow
the opposite direction of the global tendency. Since the particles crowd in some region of
the search space, which is possibly a local minimum, this mechanism of attraction and
repulsion is desired as it can detect this situation and sooner can repel each particle from
its current positions through the scheme of repulsion. The repulsion scheme will push the
particles in the opposite direction of the global best position while the best solution found
so far remains intact. The diversity control of the swarm is an important feedback given
by the swarm and must be further investigated.

The introduction of gradient-based PSO algorithm, named as GPSO, is published
in (NOEL, 2012). The root idea is to use gradient directions to accurate local exploitation
around the global best position, as well as to strengthen the global exploration provided by
the PSO. GPSO algorithm combines features of stochastic and deterministic optimization
schemes and avoids their weaknesses. This approach allows an accurate final solution to
be computed while retaining the ability to explore better solutions. Later in (HAN; LIU,
2014), another relevant paper presented both the diversity control and gradient-based
information as strategies to interchange two PSO algorithms during the search process.
The new approach is a diversity-guided hybrid PSO based on gradient search, termed
as DGHPSOGS. In this hybrid PSO, the searching alternates between an adaptive PSO
(classical PSO with dynamic inertia weight) and DGPSOGS according to the diversity
value of the swarm. The adaptive PSO algorithm led the swarm to converge to local
minima, while DGPSOGS algorithm kept the diversity of the swarm adaptively as well as
searching in the negative gradient direction.
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Although diversity control and gradient-based information are important strides to
consider by this thesis, the following works are related to fundamental issues of classical
PSO versions. The authors concern about the properties of rotation variance and how
the dynamics of particle’s motion deal with rotation of the coordinate systems. When an
optimization algorithm satisfies the property rotation variance, it means its performance
may deteriorate as the coordinate system is manipulated, i.e., the algorithm is sensitive to
the rotation of the search space, whereas rotation invariance preserves its performance
while the coordinate system is rotated. In (WILKE; KOK; GROENWOLD, 2007a), the
authors investigated the significance of diversity in the PSO algorithm by studying two
different implementations of PSO: rotatinally invariant (known as linear in the paper) and
rotationally variant (called as classical) PSO formulations. The only difference between
both versions is the velocity update equation. The first implies scalar random variables,
while the second works with vectors of random variables. They showed that particle
trajectories collapse to line searches in d-dimensional space when linear PSO velocity
update equation is used. The classical formulation does not suffer this drawback. Instead,
directional diversity stochastic search trajectories are retained, which in turn helps to
alleviate premature convergence.

Wilke et al. also provided mathematical tools to proof whether a metaheuristic
approach is invariant of the scale and frame (i.e., translation and rotation) in which an
objective function is posed (WILKE; KOK; GROENWOLD, 2007b). They have found that
linear velocity update equation is scale and frame invariant, but that the classical velocity
update equation lacks rotational invariance. The property comes with two consequences:
linear velocity update equation lacks diversity, resulting in particle trajectories that collapse
to line searches, and in contrast, the classical velocity update equation maintains diverse
particle trajectories. Additionally, the authors illustrated that diversity and invariance are
not necessarily exclusive, they proposed a new velocity update equation based on rotation
matrix, called Wilke PSO (WPSO) algorithm in this thesis. This update equation is
rotationally invariant and at the same time directionally diverse. This is achieved through
consistent perturbation of the search directions. In Spears et al. (SPEARS; GREEN;
SPEARS, 2010), the authors provided a mathematical relation between the property
rotation variance and a bias, i.e., a tendency that particles have to navigate in directions
parallel to the coordinate axes. This phenomenon might be the reason why performance is
changed by the rotation of the search space, but no consistent proof is given in that paper.

Another relevant work was described by Maurice Clerc in (CLERC, 2012b) where
a new variation, named Standard PSO (SPSO), would be used as a baseline algorithm
for comparisons. By the time a new PSO version is proposed, it should be compared
with the SPSO. This PSO version changes the way a particle moves through the search
space by developing a new velocity update equation based on a hyperspherical search
distribution, i.e., hyperspherical distribution is formed by a center point (average position
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of three points: particle’s position, local memory of the particle, and best global memory
of the swarm) and a radius formed by the distance between the center and the particle. A
random point from a uniform distribution is drawn inside this hypersphere and then the
particle moves to this position. In this way, particle is not biased by the coordinate system.
Thus, SPSO version is rotationally invariant. Later in (ZAMBRANO-BIGIARINI; CLERC;
ROJAS, 2013), the authors evaluated the standard PSO version on 28 test functions
designed for the Special Session on Real-Parameter Single Objective Optimization at
CEC-2013. Results showed an outstanding performance of SPSO-2011 for the family of
unimodal and separable test functions with a fast convergence to the global optimum.

In (BONYADI; MICHALEWICZ; LI, 2014), the proposed PSO can be considered
an improvement of WPSO algorithm described in (WILKE; KOK; GROENWOLD, 2007b).
The authors examined several issues associated with the multiplication of personal and
social influence vectors by such random matrices, including uncontrollable changes in
the length and direction of these vectors, weak direction alternation for the vectors that
are aligned closely to coordinate axes resulting in preventing the swarm from further
improvement in some situations, and limitation in particle movement to one orthant
resulting in premature convergence in some situations. They proposed the use of a randomly
generated rotation matrices (rather than an approximated rotation matrix in WPSO) in
the velocity updating equation of the particle swarm optimizer. This approach makes it
possible to control the impact of the random components (i.e. the random matrices) on
the direction and length of personal and social influence vectors separately. As a result,
all the above mentioned issues were effectively addressed. They also proposed to use the
Euclidean rotation matrices for rotation because it preserves the length of the vectors
during rotation, which makes it easier to control the effects of the randomness on the
direction and length of vectors.

Bonyadi et al. in (BONYADI; MICHALEWICZ, 2014) also developed a locally
convergent rotationally invariant PSO algorithm. The motivations are related to the
avoidance of stagnation of particles in some points in the search space, inability to change
the value of one or more decision variables, poor performance when the swarm size is small,
lack of guarantee to converge even to a local optimum (local optimizer), poor performance
when the number of dimensions grows, and sensitivity of the algorithm to the rotation
of the search space. The significance of each of these issues was discussed and it was
argued that none of the particle swarm optimizers they are aware of can address all of
these issues at the same time. To address all of these issues at the same time, a new
general form of velocity update equation for the PSO algorithm, named as BPSO, that
contains a user-definable normal distribution function around local and global memories
was proposed. It is proven that the proposed velocity update equation guarantees to
address all of mentioned issues satisfactorily.
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In a reasonable fashion, deterministic gradient-based approaches are further detailed
in Sections 2.6 and 2.7 and new approaches, named as SAPSO and ISAPSO algorithms,
are later reported in Chapter 3 where important features, such as gradient information,
diversity control and rotation matrices, are embedded in all particles’ motion at each
iteration of the search process.

1.4 Motivation
The literature of swarm intelligence, bio- and nature-inspired metaheuristics is

wide and still growing (BOUSSAïD; LEPAGNOT; SIARRY, 2013; BLUM et al., 2011;
SHEHAB; KHADER; AL-BETAR, 2017; HOSSEINI; KHALED, 2014). The trend seems
to be the use of any kind of real-world observation as an approach to face optimization
problems. The population-based metaheuristics related to some animal wildlife-behavior
observation have a broad and miscellaneous list. To mention some bio-inspired algorithms
for optimization: Ants (DORIGO; MANIEZZO; COLORNI, 1996), Bees (KARABOGA,
2005), Glowworms (KRISHNANAND; GHOSE, 2005) or Fireflies (YANG, 2008; YANG,
2009), Frogs (EUSUFF; LANSEY; PASHA, 2006), Cuckoos (BLUM et al., 2011), Bats
(YANG; HE, 2013), Fishes (QIAN, 2002), Spiders (YU; LI, 2015), Whales (BIYANTO
et al., 2017), and so on. The algorithms related to nature-inspired observation are even
more creatives. To name a few: River Formation Dynamics (RABANAL; RODRÍGUEZ;
RUBIO, 2007), Law of Gravity and Mass Interactions (RASHEDI; NEZAMABADI-POUR;
SARYAZDI, 2009), Flower Pollination (YANG, 2012), Hydrological Cycle (WEDYAN;
WHALLEY; NARAYANAN, 2017), Mine Bomb Explosion (SADOLLAH et al., 2013),
Bib-Bang Crunch (ZANDI; AFJEI; SEDIGHIZADEH, 2012), Electromagnetism (CUEVAS
et al., 2012), and so on. The work made by Fister Jr (JR. et al., 2013) has a review of the
well-known metaheuristics.

One might say is challenging to find papers with breakthrough results in the
optimization area, due to the constant “reinvention of the wheel”, i.e., the authors use
different terms for several common concepts and call them new (SÖRENSEN, 2015). This
fact negatively contributes to the area of optimization and deviates the attention to other
spotlights, instead of solving at least one of the optimization challenges, for instance, to
highlight a few of them related to population-based approaches: slow convergence process,
re-visitation of areas already evaluated, prominent areas of the search space not properly
investigated, the algorithms are prone to premature convergence specially when they are
highly dependent of their initial parameters, the trade-off between rotation invariance and
directional diversity, and biases toward the coordinate axes.

This thesis is pursuing to face some of the aforementioned challenges in the literature
of global continuous optimization: to properly investigate areas of the search space with
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gradient information, to avoid premature convergence with the diversity control mechanism,
to develop PSO variants which satisfy the property rotation invariance and have directional
diversity simultaneously. Moreover, the algorithms developed in this thesis are under a
rigorous methodology of evaluating metaheuristic approaches (CLERC, 2012a), including
the analyses of multiple performance criteria related to stochastic variables. Besides, the
analyses described in this thesis are also based on a reliable number of algorithm’s run
whose results are later submitted to statistical hypothesis tests, such as Friedman’s and
Wilcoxon’s tests.

1.5 Justification
This thesis will later describe in detail the foundations of SAPSO algorithm with

deterministic characteristics, an empirical analysis about rotation and information exchange
among particles, and a final algorithm called ISAPSO built by a consistent aggregation
of all previous valuable technical contributions, which embodies prominent features from
SAPSO and the property of rotation invariance. The enhancements provided by this thesis
are worth since the essence of such innovations in the original works has some fundamental
issues discussed here.

As previously presented, the authors of the works (NOEL; JANNETT, 2004;
NOEL, 2012) seem to be the first ones to build a gradient-based PSO algorithm. The
former work embedded the gradient information in the velocity update equation, while
the later boosted the initial proposal by applying the gradient descent algorithm in the
current global best position of the swarm only. Invariably, those approaches introduced a
deterministic direction jointly with the global tendency of the swarm. Although better
results were reported by the numerical simulations, the methodology seems not convincing,
as the authors evaluated the algorithms in a set of simple benchmark functions without
concerning about statistical significance analysis. Furthermore, in the second work, the
idea sounds like a memetic approach, once the intention is to improve the global best
position with a few iterations of the deterministic method. This poses a fundamental issue
of erroneously push the swam to local minima without any possibility to escape. This is
also the same problem found in the following works (ZAHARA; KAO; SU, 2009; ZAHARA;
KAO; LIU, 2009; LIU; HAN, 2013; HAN; LIU, 2014; HAN; LIU, 2015). In (HAN; LIU,
2015), for instance, the work proposed an adaptation of the previous work (LIU; HAN,
2013), which uses a second order derivatives with Quasi-Newton method to move particles
in the search space. The particle’s position is only updated when a new position is better
than the old one, which increases the computational cost of the algorithm and has the
potential to waste a such important deterministic direction provided by Newton’s method.

The aforementioned modifications safely provide interesting approaches to the
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literature of PSO. However, using gradient-based information significantly increases com-
putational costs. One may think that gradient direction must be used wisely, instead of
using as a possibility for moving particles. Consequently, SAPSO and ISAPSO algorithms
work with semi-autonomous particles, i.e., each particle decides between two possible
types of movements: follow the global tendency or its local derivatives. This decision
equips each particle with the possibility to solely escape from local minima. In addition,
the diversity control is another mechanism to avoid premature convergence by repelling
particles whenever necessary.

The random walk mainly presented in both random weighted terms of velocity
update equation can compromise the search process and lead the swarm to an explosion,
also termed as drunkard’s random (OZCAN et al., 1999; CLERC; KENNEDY, 2002).
Some mechanisms to decrease this effect by controlling the dynamics of the inertia weight,
cognitive and social coefficients are present in the literature (SHI; EBERHART, 1999;
RATNAWEERA; HALGAMUGE; WATSON, 2004). In this thesis, different mechanism to
control the dynamics of particles are investigated. SAPSO algorithm use static parameters
to control cognitive and social coefficients, while the inertia weight value decreases linearly
throughout iteration. In contrast, ISAPSO algorithm simplifies parameter settings by fixing
the three parameters with the same well-known values of the literature mainly based on
(CLERC, 2012b). This thesis also reserves a deep analysis about four combinations of PSOs.
A rotationally variant and invariant coupled with a fast and late exchange information
among particles are evaluated on a benchmark functions to investigate whether the presence
or absence of those properties signifies different performance when considering different
and complex test optimization problems. The prominent results of this study motivated the
use of rotation matrices in ISAPSO algorithm, previously justified by the works (WILKE;
KOK; GROENWOLD, 2007b; BONYADI; MICHALEWICZ, 2014).

To summarize important characteristics present in each related work described so
far, Table 1 categorizes the algorithms by the following features: cognitive coefficient (c1),
social coefficient (c2), inertial weight (w), and constriction factor (χ) can be static (same
values for all types of problem) or dynamic (varying along iterations or problem-dependent);
diversity control (dir), gradient information (∇), rotation matrix (rm), rotation invariance
(inv), and directional diversity (dd). The last two rows show the SAPSO and ISAPSO
approaches described later in this thesis. At first glance, SAPSO algorithm is similar to
the work (HAN; LIU, 2014), but with dynamically c1 (social coefficient in this context)
and c2 (gradient coefficient). Despite this, DGHPSOGS actually uses two algorithms in its
formulation, one is used to crowd particles and the other one to disperse, which brings
complexity to the implementation of the approach. Differently, the gradient information
and diversity control is embedded in just one algorithm with SAPSO. Moreover, there
are fundamental issues related to the velocity update equations and the diversity control
in DGHPSOGS algorithm, which consumes computational time and a fast switching
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Table 1 – Principal features of each related work.

Algorithm c1 c2 w χ div ∇ rm inv dd

(KENNEDY; EBERHART, 1995) static static - - 8 8 8 4 8

(EBERHART; KENNEDY, 1995) static static - - 8 8 8 4 8

(KENNEDY, 1997b) static static - - 8 8 8 4 8

(SHI; EBERHART, 1998a) static static dynamic - 8 8 8 4 8

(SHI; EBERHART, 1999) static static dynamic - 8 8 8 4 8

(CLERC, 1999) static static - static 8 8 8 4 8

(EBERHART; SHI, 2000) static static dynamic static 8 8 8 4 8

(CLERC; KENNEDY, 2002) static static - static 8 8 8 4 8

(VESTERSTRØM; RIGET, 2002) – ARPSO static static dynamic - 4 8 8 4 8

(YAMAGUCHI; YASUDA, 2006) dynamic dynamic static - 8 8 8 8 4

(ZHAN et al., 2007) dynamic dynamic static - 8 8 8 8 4

(ZHAN et al., 2009) dynamic dynamic dynamic - 8 8 8 8 4

(NOEL, 2012) – GPSO static static - - 8 4 8 4 8

(HAN; LIU, 2014) – DGHPSOGS static static dynamic - 4 4 8 4 8

(WILKE; KOK; GROENWOLD, 2007b) – WPSO static static static - 8 8 4 4 4

(CLERC, 2012b) – SPSO static static static - 8 8 8 4 4

(BONYADI; MICHALEWICZ; LI, 2014) static static static - 8 8 4 4 4

(BONYADI; MICHALEWICZ, 2014) – BPSO static static static - 8 8 8 4 4

(SANTOS et al., 2018) – SAPSO dynamic dynamic dynamic - 4 4 8 4 8

ISAPSO algorithm static static static - 4 4 4 4 4

Source: produced by the author.

between both algorithms. ISAPSO algorithm turns every coefficient to static variables
independently of the optimization problem under consideration. Thus, the nuisance about
problem-dependent parameter is overcome by this approach. Furthermore, the rotation
matrices are introduced in the velocity update equation to guarantee directional diversity
of search distribution and to satisfy the property rotation invariance (i.e., to obtain similar
performances regardless of the coordinate system) at the same time.

1.6 Objectives
The main objective of this thesis is to improve the global search process of PSO

algorithm by introducing deterministic gradient-based information along with the properties
rotation invariance and directional diversity. A mathematical proof is given in order to
show it is possible to couple both properties at the same time and to yield a general
PSO version that can be applied in a larger class of optimization problems. A rotationally
invariant PSO version, coined as ISAPSO, is the final outcome of this thesis.

The following specific objectives are addressed to achieve the main objective:

• To embed the gradient direction into the classical PSO. The expectation is to find
local optima of the objective function without wasting computational time, since
gradient is a deterministic information that points in the direction of the greatest
rate of increase (or decrease) of the function;
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• To incorporate the diversity controlling approach into the classical PSO. This
objective faces the premature convergence normally present in any metaheuristic;

• To test the enhanced PSO version in a set of benchmark functions. The purpose is
to compare the performance of the proposed approach with other related PSOs;

• To evaluate the enhanced PSO version through rigorous statistical hypothesis tests;

• To develop a simple method to define the minimum number of algorithm runs to
consider reliable results. This method must be able to work with one or more opti-
mization problems. Moreover, performance criteria such as success rate or objective
function value must be suitable to work with;

• To provide empirical analyses of rotation and information exchange among particles.
The assumption to be addressed is whether both subjects impact on the performances
of classical PSO versions.

1.7 Methodology
A common methodology to evaluate multiples metaheuristic approaches is depicted

in Figure 1. After selecting and developing the discussed algorithms, such as SAPSO and
ISAPSO, two benchmark optimization problems are separated to later evaluate the non-
deterministic approaches. In this thesis, the enhancements are being subjected to a suite
of test functions based on De Jong’s problems (JONG, 1975) and CEC 2017 benchmark
optimization problems (AWAD et al., 2017), which is formed by unimodal, multimodal,
hybrid and composition test functions. Each test function offers different challenges for
any optimization algorithm, such as: many local minima surrounding the global minimum,
nearly flat regions, high dimensional continuous space for searching, decentralized global
minimum, among others. The functions are used to assert the qualities of the algorithms,
particularly on multimodal functions where the algorithms must be able to avoid local
minima and fine-tune the global optimum. Besides, modern modifications provide even
more challenging test function for metaheuristic approaches, since shifted, rotated and
composed functions are available to test the different features of the algorithms.

To evaluate multiples metaheuristics, it is common to consider many executions
of the algorithm applied on a specific test functions and average the results based on
different statistical measures, which reduces the probability to reach good results by
chance. Thus, estimating a reliable number of algorithm’s execution is very important
and if the number is not properly defined, the comparisons might be impaired. A method
to estimate a reliable number of executions is formulated in this thesis based on the law
of large numbers and Chebyshev’s Inequality, and the technique is used throughout the
experimental results. All approaches deployed in this thesis are evaluated in this manner.
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Figure 1 – General methodology of the thesis.

Source: produced by the author.

The principal measurements used for comparison among algorithms are highlighted in the
following:

• Minimum value found: this is related to the function value found by the best particle
of the swarm when the algorithm stops.

• Error rate: it is related to the difference between the minimum function value found
by the swarm and the true global optimum value of the objective function.

• Success rate: it is a performance criterion to determine the achievement of an
algorithm, i.e., whether the goal of the optimization problem is found or not. This
measurement is binary, resulting in 1 if the desired error rate is successful achieved,
or 0 otherwise. The desired error rate has to be below a predefined threshold value
(e.g., 10−2). Although being a binary variable, multiple executions of the algorithms
transform the success rate into percentage values between [0, 100], which is a value
to be used by a statistical hypothesis test due to the bounded values.

• Computational time: a time elapsed required to run all algorithmic steps. This
measured performance gives a different perspective of the obtained results, as the
main goal is to evaluate the faster approach.

• Required iterations: a measure to handle the number of iterations required to stop
the algorithm. This is usually related to the number of iterations required to achieve
convergence, i.e., the exact iteration where the algorithm finds the global minimum
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of the test function or the approximated global best result ruled by a predefined
threshold.

• Statistical hypothesis test: a non-parametric test, such as Friedman’s and Wilcoxon’s
tests, aims to detect significant differences between two sample means and can be
applied to continuous data through a ranking-based transformations (DERRAC et
al., 2011; HOLLANDER; WOLFE; CHICKEN, 2013). These tests also produce the
p-value, i.e., the probability, given the null hypothesis, of obtaining a result equal to
or more extreme than what was actually observed.

Besides classical statistical measures, such as error and success rates, Friedman’s
and Wilcoxon’s hypothesis tests are the ones selected to evaluate the statistical significance
of the outcomes. These statistical inferences report when an algorithm is way better than
other statistically, considering a set of optimization problems. Finally, the following steps
of the general methodology are sequential application of the selected components. In the
end, an analysis of the results is left for the practitioner.

1.8 Thesis organization
The remainder of this thesis is organized as follows. In Chapter 2, a literature review

of the classical PSO algorithm along with the most significant improvements made by other
authors is presented. The gradient descent, Newton’s and Quasi-Newton’s deterministic
algorithm for optimization are also explained. Furthermore, the mathematical tool to prove
that an algorithm is scale, translation and rotation invariant is provided. Enhancements
provided by this thesis are explained in details in Chapter 3. This chapter also brings an
important discussion about exploration versus exploitation in the field of metaheuristics;
influence of rotation and information exchange among particles; a mathematical proof
that ISAPSO is rotationally invariant is given. In Chapter 4, the simulation results of all
proposed enhancements are presented. Finally, Chapter 5 shows the concluding remarks of
this thesis. This chapter also discusses about future researches.
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2 Theoretical background

This chapter presents the theoretical background that will be widely used through-
out this thesis. The author provides a notation to explain the classical PSO algorithm
along with the two main designs to spread information among particles. The heuristics
about bound handling and velocity clamp are discussed next. This chapter also reports the
significant improvements in the classical PSO algorithm since its first version in 1995. The
roots of gradient descent algorithm, Newton’s and Quasi-Newton’s methods are formulated
hereafter. Later, the mathematical tool to prove that an algorithm is scale, translation and
rotational invariant is exposed in detail. After, the versions of PSO related to this thesis
are described. This chapter ends with Maurice Clerc’s rules and a general formulation of
optimization problems.

2.1 The classical particle swarm optimization
The classical particle swarm optimization, a global search algorithm firstly in-

troduced by Kennedy and Eberhart (KENNEDY; EBERHART, 1995; EBERHART;
KENNEDY, 1995), has roots in the social behavior of bird flocking and fish schooling
originally published by Reynolds (REYNOLDS, 1987a; REYNOLDS, 1987b), Heppner
(HEPPNER; GRENANDER, 1990) and Wilson (WILSON, 1975). The idea of particle
swarm arose through simulation of a simplified social model which is intrinsically based
on a social metaphor, though the algorithm stands without metaphorical support.

Reynolds was pursuing to understand the aesthetics of bird flocking, whereas
Heppner was interested in discovering the underlying rules that enable large numbers of
birds to flock synchronously, often changing direction suddenly, scattering and regrouping.
Both scientists came out with the idea that a cellular automata might underlie the
unpredictable group dynamics of bird social behavior, relying heavily on manipulation of
inter-individual distances and the synchrony of flocking behavior might be a function of
birds’ efforts to maintain an optimum distance between themselves and their neighbors.

The crucial mechanism of cooperation among particles presented in the PSO
algorithm comes from another source, the sociobiologist Wilson (WILSON, 2000 apud
KENNEDY; EBERHART, 1995) once said about fish schooling: “In theory at least,
individual members of the school can profit from the discoveries and previous experience
of all other members of the school during the search for food”. In other words, the social
sharing of information among herds, schools, flocks, and humans offers an evolutionary
advantage when cooperating with each other, instead of competing for food items.
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The PSO algorithm requires only primitive mathematical operations and is compu-
tationally inexpensive in terms of memory and speed. One of the main benefits of PSO is
its simplicity and the power for solving complex optimization problems, avoiding the use of
any sophisticated evolutionary operations found in GAs (GOLDBERG, 1989). Also, due to
the metaheuristic nature and easy implementation, PSO has been used in many domains
of science such as training neural network weights and select the best network architecture
(GUDISE; VENAYAGAMOORTHY, 2003; GRIMALDI et al., 2004), text feature selection
(LU et al., 2015), time series forecasting (CHOUIKHI et al., 2017), dynamic vehicle routing
(OKULEWICZ; MAńDZIUK, 2017), and many others.

The main idea of PSO is to perform a biased stochastic search of the global optimum
solution through the search space of a problem. However, the random walk might lead
to premature convergence like most of the stochastic methods, specially in multimodal
optimization problems where the fitness landscape is quite irregular and challenging to find
the optimal solution. This is one of the challenges that the new generation of metaheuristic
approaches must be concerned about. One way to deal with this challenge is to diminish
the probability of unfeasible results or to provide mechanisms to vanish the problem of
premature converge, either would be of great advance in the field of metaheuristics.

The PSO algorithm is a population- or swarm-based technique compound by
particles. Each particle is a candidate solution to the optimizing problem in a d-dimensional
space. The position of the ith particle is denoted as ~xi = [xi1, xi2, . . . , xid], i = 1, 2, . . . , n,
where n represents the number of particles. The ith particle also “remembers” its previous
best position denoted as ~pi = [pi1, pi2, . . . , pid]. The previous best position, also known as
“local memory”, is the one with the best objective function value found so far by the ith
particle. The global best position of the swarm is expressed as ~g = [g1, g2, . . . , gd]. This
position is termed as “global memory” and is considered herein as the best local memory
among the particles. The previous and global best positions are computed in relation to
the iteration t, respectively, as

~pti = arg min
~xk

i

{f(~xki ) | k = 1, 2, . . . , t} (2.1)

and
~gt = arg min

~pt
i

{f(~pti) | i = 1, 2, . . . , n}. (2.2)

Note that, herein the swarm considers a fully connected topology, i.e., one local
memory must be strictly a global memory at each iteration. Each particle of the swarm
has a velocity vector denoted as ~vi = [vi1, vi2, . . . , vid]. The classical PSO algorithm
(KENNEDY; EBERHART, 1995) updates each particle’s position by a random weighted
average between the previous best position found so far and the global best position of



2.1. The classical particle swarm optimization 43

Figure 2 – PSO model of a particle’s motion.

Source: produced by the author.

the entire population, defined as

~vt+1
i = ~vti + c1φ1

(
~pti − ~xti

)
︸ ︷︷ ︸

cognitive component

+ c2φ2
(
~gt − ~xti

)
︸ ︷︷ ︸
social component

(2.3)

and
~xt+1
i = ~xti + ~vt+1

i , (2.4)

where c1 and c2 correspond respectively to the cognitive and social coefficients; φ1 and φ2

are two uniformly distributed random numbers between [0, 1]. A visual representation of a
particle’s movement at instant t is depicted in Figure 2.

One can see three forces acting over the particle ~xti, such that:

1. ~vti: the momentum associated with the last velocity vector of the ith particle, from
~vti = ~xti − ~xt−1

i . The last velocity ~vti is used as an inertial direction at iteration t, i.e.,
the direction where the ith particle was going in the last iteration;

2. c1φ1
(
~pti − ~xti

)
: this force is about the importance given to the local memory of the

particle; the quantity of knowledge the ith particle is taken from its local memory.
The cognitive coefficient c1 plays an important role in this matter and is set by the
practitioner. Note that values of c1 > 1 means the ith particle might fly over the ~pi
position sometimes during the iterations;

3. c2φ2
(
~gt − ~xti

)
: this component is associated with the global memory of the swarm,

i.e., the direction to reach the global best position regarding the current ~xti position.
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One can note this component shares the global memory with the whole swarm.
This is the component associated with the crowd of particles in some region of the
search space in the last iterations. The parameter c2 controls the speed at which
global memory information is transmitted among the particles; When c2 > 1, the
ith particle might overpass the ~gt position during algorithm’s run.

The search process of a classical PSO is presented in Algorithm 1. Lines 2–3
initialize all structures and obtain the best position among all particles, respectively. A
common form to initialize the particles is to uniformly distribute them through out the
search space with a uniformly distributed random number generator applied at each
dimension of each particle. The velocity of each particle is initialize at zero and the local
memory of each particle starts with its own position at the beginning. The global memory
must be obtained according to the Equation 2.2 with ~p or ~x as argument, since ~p← ~x at
the beginning.

From lines 4–15, the algorithm runs the main loop. When a stop criterion matches
the predefined practitioner’s criteria, then the main loop stops. Common examples of stop
criteria can be: exceeded the maximum number of iterations; found the global best solution
(in real-world engineering application this stop criterion may not be applied, as the best
solution is often not known); a sub-optimal solution ~x was found, such that a predefined
error ε was achieved according to |f(~x)− f(~xopt)| < ε; detected a premature convergence
state of the swarm; a number of successive iterations without improvements in the overall
fitness of the swarm; exceeded the maximum number of objective function calls.

The inside loop (lines 5–14) updates the velocity, position and fitness of each
particle, and also checks whether the new position is better than the memories (lines 8

Algorithm 1 Classical PSO algorithm.
1: function PSO(~x, ~v, ~p)
2: initialize ~x, ~v, ~p← ~x . initialize positions at random and velocities at 0
3: ~g← getBest(~p) . get global best position (Equation 2.16)
4: while stop criteria not reached do
5: for i = 1 to n do
6: ~vi ← update(~xi, ~vi, ~pi, ~g) . update particle velocity (Equation 2.3)
7: ~xi ← ~xi + ~vi . update particle position (Equation 2.4)
8: if f(~xi) < f(~pi) then
9: ~pi ← ~xi . update the previous best position
10: if f(~xi) < f(~g) then
11: ~g← ~xi . update the global best position
12: end if
13: end if
14: end for
15: end while
16: return ~g
17: end function
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and 10). A true statement in the line 8 indicates the new position becomes the previous
best position of the particle found (line 9). Finally, it checks whether the global best
position needs to be updated (line 10–12). This if-then statement applies the Equation 2.2
online, i.e., right after each particles’ movement, the global memory can be updated if
necessary. The result of the algorithm is the global best position (line 16). This described
PSO version is known as rotationally invariant with fast exchange information among
particles. More information about this nomenclature is given in Sections 2.2 and 2.8.

2.2 Information exchange among particles
The vectors ~p and ~g are commonly referred to as local and global memory, respec-

tively. Local memory forces the particle towards its previous best position, which indicates
a local exploitation performed by each particle. Global memory is another force that pushes
the particle, and the swarm as well, in the direction of the global best position found so
far by the population. The latter is the only information exchange among particles while
the algorithm is running.

Some versions of PSO attempts to update the global memory after the movement
of an ith particle, such that the (i+ 1)th particle uses this new global memory immediately
(see Algorithm 2). Other versions await an entire iteration to attempt to update global
memory (see Algorithm 3). The central issue is that a small difference can interfere the
results, by decreasing or increasing the computational time require to run the algorithm
and affecting the convergence of the swarm, or even precluding the parallelism of the
algorithm.

Algorithm 2 Fast information exchange.
1: while stop criteria not matched do
2: for i = 1 to n do
3: · · ·
4: if f(~xi) < f(~g) then
5: ~g← ~xi . update the global best position
6: end if
7: · · ·
8: end for
9: end while

Algorithm 3 Late information exchange.
1: while stop criteria not matched do
2: for i = 1 to n do
3: · · ·
4: end for
5: ~g← getBest(~p) . get global best position (Equation 2.2)
6: end while
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2.3 Bound handling
In most computing and engineering applications, the optimization problem must be

bound, i.e., ~x ∈ S | S ⊂ Rd, for preventing the roam of the particles to infinity throughout
the search space. One of the most important variant of constraints is called box constraints,
which is expressed in the form

∀j ∈ {1, 2, . . . , d},∀i ∈ {1, 2, . . . , n} : xmin ≤ xij ≤ xmax,

the range of each variable xij has a lower bound xmin and an upper bound xmax. When
a particle moves outside of the box constraints, some strategy must be adopted to push
back the particle inside the feasible area. For constraint optimization problems of this
form, a large number of constraint handling mechanisms are available in the literature.
Figure 3 depicts four different box constraint-handling methods described below:

• Infinity (Figure 3a) (HU; EBERHART, 2002): the objective function values for
particles outside the boundaries are considered infinity;

• Absorption (Figure 3b) (CLERC, 2006): a scale factor is used to shrink the length
of the updated velocity, so as the particle’s position ends up on the boundary;

• Nearest (Figure 3c) (CLERC, 2006): if a particle leaves the space of the feasible
solutions, then it is set to the nearest position inside the box constraint;

• Reflection (Figure 3d) (BOCHENEK; FORYŚ, 2006): a reflection at the border is
applied in cases where the particle ends up outside the boundaries.

2.4 Velocity clamping
A common velocity clamping is to limit the velocity of the particles to a specific

value vmax to avoid that the magnitudes of the particles’ positions and velocities increase
in an uncontrolled manner (BRATTON; KENNEDY, 2007). To achieve this, it is necessary
to apply right after the standard velocity update Equation 2.3 the following condition

vij =

sign(vij)vmax if |vij| ≥ vmax

vi else
, (2.5)

where sign(·) is the signal function. Later in this chapter, a discussion about the constriction
coefficients is elaborated based on a deterministic PSO model described by Clerc and
Kennedy (CLERC; KENNEDY, 2002). They showed that a restriction of the particles’
velocities is not necessary to obtain a convergent particle swarm, but as a price, the velocity
update equation must use a constriction factor.
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Figure 3 – Box constraint-handling methods.
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Source: produced by the author.

2.5 Improvements on particle swarm optimization
Since the first release of the PSO algorithm developed by Kennedy and Eberhart

in 1995, some significant improvements were provided by the scientific community. In this
section, some well-known improvements embedded in the PSO algorithm are discussed.
One important consideration to make is that the “significant improvements” herein are
related to the breakthrough ideas, i.e., innovative concepts used by many practitioners
and in different computing and engineering optimization problems.

2.5.1 Inertia weight

The paper published by Shi and Eberhart (SHI; EBERHART, 1998a) introduced
a new parameter, called the inertia weight, into the original particle swarm optimizer.
This parameter plays an important role balancing the trade-off between global and local
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search. It can be a positive constant or even a positive linear or nonlinear function of time.
Equation 2.3 was updated by the following

~vt+1
i = w~vti + c1φ1

(
~pti − ~xti

)
+ c2φ2

(
~gt − ~xti

)
, (2.6)

where w stands for the inertia weight. According to the experimental tests, when the
inertia weight is small (e.g., w < 0.8) the PSO algorithm acts like a local search algorithm,
whereas when the inertia weight is large (e.g., w > 1.2), the PSO algorithm resembles a
global search method and tries to explore new areas. A moderate value between [0.9, 1.2]
is a good range to choose w from. However, one can note the discussions presented in the
original paper were based on a single multimodal function. Therefore, any choice of w
must be considered with care.

A time decreasing inertia weight is also introduced in the same paper which ended
up in a significant improvement on the PSO performance. This paper was the first one
to admit a function over time to update the inertia weight parameter. Although the idea
might be simple at first sight, it has opened a large area of study regarding the update of
time-varying parameters.

2.5.2 Dynamic adjustments for inertia weight

The notion about linear decreasing inertia weight arose in the paper (SHI; EBER-
HART, 1998a). Ever since the papers (SHI; EBERHART, 1998b; SHI; EBERHART, 1999;
SUGANTHAN, 1999) matured the proposal of partially control the search ability of the
swarm and the PSO algorithm itself. Note that this approach was later termed as time-
varying inertia weight (RATNAWEERA; HALGAMUGE; WATSON, 2004; ARUMUGAM;
RAO, 2006).

The inertia weight w is employed to control the impact of the previous history of
velocities on the current velocity of the particle, thereby influencing the trade-off between
global (wide-ranging) and local (nearby) exploration abilities of the particles. A larger
inertia weight facilitates global exploration (searching new areas), while a smaller inertia
weight tends to facilitate local exploration to fine-tune the current search area. One can
think that the inertia weight is a problem-dependent parameter. However, a suitable
selection of the inertia weight is more related to the balance between global and local
exploration abilities, than being a problem-dependent parameter. Equation 2.7 provides a
simple form to achieve the linear decreasing inertia weight,

wt = w1 −
(
w1 − w2

)
× t

T
, (2.7)

where w1 and w2 are the initial and final inertia weights, and T is the maximum number
of iterations.
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The paper (SUGANTHAN, 1999) illustrates a number of techniques to improve
the standard PSO algorithm. One of the improvements is the same previously presented
in the work (SHI; EBERHART, 1998b), which is the time-varying the inertia weight. The
author states that the magnitudes of the random walk and inertia weight in the PSO can
be gradually adjusted to perform a fine grain search during the final stages of optimization.
The proposal is evaluated in set of benchmark functions. Another work (SHI; EBERHART,
1999) extensively tested the PSO algorithm with linearly decreasing inertia weight by
experimental studies of four non-linear functions. The experimental results illustrated
that the PSO may lack global search ability at the end of a run due to the utilization
of a linearly decreasing inertia weight. However to some extent, this can be overcome by
employing a self-adapting strategy for adjusting the inertia weight. A comparative study
carried out in (BANSAL et al., 2011) on a set of benchmark functions for optimization
has shown that random inertia weight is suitable if faster convergence is desired for the
practitioner. Some of the strategies are presented as follows

wt = 0.5 + r

2 , (2.8)

wtij = 1.1− ~pij
~gj
, (2.9)

wt = (w1 − w2)
T − t

T

+ w2z, (2.10)

wt = 0.5r + 0.5z, (2.11)

wt = w1 − (w1 − w2)×
(
t

T

)3
, (2.12)

where r is a uniformly distributed random number between [0, 1], and z = 4r(1− r). The
Equations 2.8 (EBERHART; SHI, 2001), 2.9 (ARUMUGAM; RAO, 2006), 2.10 (FENG et
al., 2007), 2.11 (FENG et al., 2007), and 2.12 (NAKAGAWA; ISHIGAME; YASUDA, 2008)
are somewhat reinforcing the importance of the inertia weight and trying to determine the
contribution rate of a particle’s previous velocity to its velocity at the current time step.

2.5.3 Constriction factor

A constriction coefficient χ was also introduced in a study about explosion, stability
and convergence of particle swarm (CLERC; KENNEDY, 2002), which ensures convergence
of the entire population overtime. The principal modifications are expressed as

χ =


2κ

ψ−2+
√
ψ2−4ψ

if ψ > 4; ψ = c1 + c2

κ else
; 0 < κ < 1 (2.13)
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and
~vt+1
i = χ

(
~vti + c1φ1

(
~pti − ~xti

)
+ c2φ2

(
~gt − ~xti

))
. (2.14)

The application of constriction coefficients allows control over the dynamical
characteristics of the particle swarm, including its exploration versus exploitation. The κ
value allows the practitioner to control the degree of convergence by setting to various values
between [0, 1], while a common ψ = 4.1, implies χ = 0.729. Another important statement
of the aforementioned paper is that the random weighting of the control parameters in the
PSO algorithm results in a kind of explosion or a “drunkard’s walk” as particles’ velocities
and positions careen toward infinity. Traditionally, the explosion has been faced with vmax
parameter, which limits the velocity.

The authors also demonstrated that the particle swarm algorithm can be conceived
of in such a way that the explosion can be controlled, without resorting to the definition
of any arbitrary or problem-specific parameters. The implementation of properly defined
constriction coefficients can prevent explosion, as well as the model can be parameterized
in such a way that the particle system consistently converges on local optima. The last
reminder of the authors is that the real strength of the particle swarm derives from the
collaboratively interactions among particles as they search the space. The third term from
the velocity update equation, termed as “social influence” is derived from the successes of
other particles, such that if this influence is removed, the PSO algorithm’s performance is
abysmal (KENNEDY, 1997a). As a particle swarm searches during run time, particles are
moving toward one another’s successes. An usual result is a cluster of particles in optimal
regions of the search space.

2.5.4 PSO models of velocity equation

Kennedy’s work (KENNEDY, 1997a) highlights some further details about the
influence of each term of the velocity update equation. The author considers a neural
network XOR problem to be solved by the particle swarm. Experimental tests evaluated
four different models of PSO: 1) Full model: uses the classical velocity update equation to
optimize a problem (Equation 2.3); 2) Cognitive-only model: removes the third term of the
equation (social influence); 3) Social-only model: takes away the second term (cognitive
influence); and 4) Selfless model stands for a variation of the social-only model where the
ring topology does not consider the ith particle itself.

The study showed that in the social-only model, the algorithm tended to be a more
efficient optimizer for the present XOR problem than both cognitive-only and the full
models of PSO, whereas in the cognitive-only model the particles are prone to search areas
in which they had been initialized and failed to move into optimal regions. As the selfless
model is just a variation of the social-only model, one can see little improvements in the
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PSO algorithm regarding the full and cognitive-only model, but inferior when compared
with the social-only model.

One important mention is that the results represent performances of different
versions of the algorithm on one particular problem. Obviously, the models of velocity will
certainly perform differently on problems featuring higher dimensionality, non-linearity,
multimodal, and so on.

The proposed SAPSO and ISAPSO algorithms described later in this thesis partially
use the social-only model defined in Kennedy’s study, i.e., it removes the original cognitive
part of the velocity update equation. Besides, herein both algorithms alternate between
the social-only model and the negative gradient direction.

2.6 Gradient descent
This section defines the gradient vector and presents a simple formulation of the

gradient descent method for optimization. These definitions are used in the proposed
SAPSO, ISAPSO, and DGHPSOGS algorithms.

Conventional methods of optimization employ tools such as gradient, subgradient
and second derivative information with Hessians. These methods can not yield more than
local solutions. They are not capable of locating or identifying a global optimum (HORST;
TUY, 1996). To find a local minimum, the gradient descent method iteratively takes small
steps in the direction of the negative gradient, following

~xt+1 = ~xt − γ∇f(~xt), (2.15)

where ~xt is a multidimensional point approximated to the local minimum at iteration
t ≥ 0, γ ∈ (0, 1) is the step size, and ∇f(~xt) is the gradient of the multivariable function
f(·) evaluated at ~xt. The gradient is a vector corresponding to the partial derivatives of
f(·) is given by

∇f = ∂f

∂xti1
~e1 + ∂f

∂xti2
~e2 + · · ·+ ∂f

∂xtid
~ed, (2.16)

where ~ei=1,2,...,d are the orthogonal unit vectors pointing in the coordinate directions, which
must be defined and differentiable at ~xt. The partial derivatives can be approximated by a
forward-differencing at a given dimension xtij for a small number ε denote as

∂f

∂xti
≈ f(xti + ε)− f(xti)

ε
. (2.17)

The gradient scheme expects to reach f(~x0) ≥ f(~x1) ≥ . . . ≥ f(~xt) at each iteration,
where ~xt corresponds to a point at a non-prohibitive computing iteration number t where
the desired minimum is found. Figure 4 illustrates the gradient descent algorithm starting
at the point ~x0 and finishing at the point ~x6, considering the smallest level curve as the



52 Chapter 2. Theoretical background

Figure 4 – Illustration of the gradient descent in series of level curves (contour lines).
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minimum value of the function. The common stop criterion is to assume a very small
error ξ, such that f(~xt)− f(~xopt) ≤ ξ, where ~xopt is the known global minimum. When the
global minimum is not known, T can be used as the maximum iteration number of the
algorithm.

2.7 Newton’s and Quasi-Newton methods
The Newton’s method, also known as Newton-Raphson (HANSEN, 1986), is used

to find approximated roots of real-valued functions. Newton’s method is an iterative
approach that continuously looks for the point (~x, f(~x) = 0) of a differentiable function f .
With an initial guess ~x0 and the derivative f ′, the following equation satisfies the better
approximation of the next point ~x1 given by

~xt+1 = ~xt − f(~xt)
f ′(~xt) . (2.18)

However, a common application of the method is in the optimization area, by
applying the Newton’s method in the differentiable function f ′ instead of the original
function f . The method construct a sequence of points from an initial guess that converges
towards an local optimum, i.e., find roots of a derivative function f ′, known as stationary
points in the form of (~x, f ′(~x) = 0). The function must be twice-differentiable and the
iterative method is repeated according to

~xt+1 = ~xt − f ′(~xt)
f ′′(~xt) . (2.19)

In higher dimensions, the derivative of the functions is replaced by the gradient
∇f(~x) and the second-order derivative is substituted by the inverse of the Hessian matrix
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Hf(~x) described as
~xt+1 = ~xt − γ[Hf(~xt)]−1∇f(~xt), (2.20)

where γ ∈ (0, 1) is the step size and [Hf(~xt)]−1 is the inverse of the Hessian matrix. A
Hessian is a square matrix of second-order partial derivatives defined as follows

H =



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xd

... ... . . . ...
∂2f

∂xd∂x1

∂2f
∂xd∂x2

. . . ∂2f
∂x2

d

 .

One can note that the estimation of the Hessian matrix is computationally expensive,
as the number of dimensions of a function increases. Due to this shortcoming, there are
many quasi-Newton methods, where an approximation for the Hessian (or its inverse) Bt

is built up from changes in the gradient. In quasi-Newton methods the Hessian matrix
of second derivatives is not computed. The Hessian is updated by analyzing successive
gradient vectors instead. A well-known quasi-Newton method is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (FLETCHER, 1987), which is the approach used by
the GPSO algorithm to compute a local optimization around the global best position of
the swarm. The approximated Hessian matrix is compute according to

Bt+1 = Bt + ~yt[~yt]T
[~yt]T~st −

Bt~st[~st]TBt

[~st]TBt~st
, (2.21)

where yt = ∇f(~xt+1)−∇f(~xt) and ~st = ~xt+1 − ~xt. The first Hessian matrix B0 is usually
the identity matrix. Thus, the first iteration of BFGS algorithm is the same one iteration
of the gradient descent algorithm. Alternatively, an estimation of the inverse approximated
Hessian matrix can be directly computed by

[Bt+1]−1 =
(

I−
~st[~yt]T
[~yt]T~st

)
[Bt]−1

(
I−

~yt[~st]T
[~yt]T~st

)
+ ~st[~st]T

[~yt]T~st , (2.22)

where I is the identity matrix with the same order as B.

Substituting [Hf(~xt)]−1 (Equation 2.20) by [Bt]−1, the following iterative BFGS
approach is finally obtained

~xt+1 = ~xt − γ[Bt]−1∇f(~xt). (2.23)

2.8 Scale, translation and rotation (in)variance
One important property of any optimization algorithm is the dependence (or

not) of the rotation in which an optimization problem is defined. In (WILKE; KOK;
GROENWOLD, 2007b), the authors described a mathematical tool to prove whether



54 Chapter 2. Theoretical background

an algorithm is rotationally invariant under scale, rotation and translation. Herein, one
can highlight only the rotation variance property in which the search performance is
dependent on the coordinate system of the objective function. Such property is related to
the separability of the objective function, i.e., the optimal value for the ith coordinate does
not depend on the choice of the remaining coordinates. Many well-known test functions
are additively decomposable. They can be written as a sum of d one-dimensional func-
tions f(~x) =

d∑
i=1

fi(xi). Additively decomposable functions are separable while separable
functions are not necessarily additively decomposable (HANSEN et al., 2011).

Let a relation between two multidimensional points ~̂x and ~x be through a scale
factor s, translation by a vector ~t, and rotation by a proper orthogonal matrix Q, such
that

~̂x = sQ~x +~t (2.24)

for any s ∈ R, Q ∈ Orth+, and ~t ∈ Rd. The same function is expressed in each of these
reference frames as

f(~̂x) = f(sQ~x +~t). (2.25)

An alternative but equivalent interpretation is defined as two distinct functions f(·) and
f̂(·). In this case, by definition

f(~x) = f̂(~̂x), (2.26)

where ~x and ~̂x represent two design vectors. Substituting Equation 2.24 into Equation 2.26
gives

f(~x) = f̂(sQ~x +~t). (2.27)

Let an additional vector transformation rule be ~v = ~x1 − ~x2. In addition, the
corresponding vectors ~̂x1 and ~̂x2 be also ~̂v = ~̂x1 − ~̂x2. Then, the relation between ~v and ~̂v
is

~̂v = ~̂x1 − ~̂x2

=
(
sQ~x1 +~t

)
−
(
sQ~x2 +~t

)
= sQ

(
~x1 − ~x1

)
= sQ~v

(2.28)

for any s ∈ R and Q ∈ Orth+. Any optimization algorithm is scale, translation and
rotation invariant if and only if the transformation rules given by Equations 2.24 and 2.28
are satisfied for all Q ∈ Orth+, i.e., the same optimal results are then obtained irrespective
of the scale and reference frame used.

When an optimization algorithm is scale, rotation and/or translation invariance
means that the algorithm performance is independent of uniform scaling of all variables,
rotation and/or translation of the reference optimization problem. When a particular
optimization algorithm is frame dependent, there exists a specific choice of reference frame
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in which the problem can be solved easier with less iterations or better by achieving a
lower cost function value, as compared to some other reference frame (WILKE; KOK;
GROENWOLD, 2007b). Since a priori knowledge of the optimal reference frame for a
particular problem is seldom available, this places an additional burden on the analyst,
which now has to consider solving the problem in a number of reference frames.

This implies that frame-dependent optimization algorithms are specialist algorithms,
tuned to perform well on a special subclass of problems. In contrast, frame invariant
optimization algorithms are general algorithms, applicable to a larger class of problems.
Frame invariance of optimization algorithms is not a strict requirement. Frame invariance
provides a useful classification of optimization algorithms. A frame invariant algorithm
requires less a priori knowledge (or tacit assumptions) of the optimization problem, when
compared to a frame variant algorithm. This implies that a frame invariant algorithm will
have either inferior or superior performance if compared to a frame variant algorithm,
depending on the validity of the assumed information.

Even though frame invariance is not required, some classes of optimization algo-
rithms do satisfy this principle, such as gradient based optimization (SNYMAN, 2005). The
gradient vector of any scalar function satisfies the transformation rules for changing both
scale and reference frame. This renders classical gradient-based optimization algorithms
scale and reference frame invariant. The following two subsections describes how the above
mathematical formulations relates with PSO.

2.8.1 Rotationally invariant PSO version

PSO described in Section 2.1 is recalled here by the two main particle’s formulations
which carries out the movement of the candidate solution throughout the search space,

~xt+1
i = ~xti + ~vt+1

i (2.29)

and
~vt+1
i = w~vti + ~ψψψ

t

i, (2.30)

where ~ψψψ
t

i is defined as stochastic vector.

The stochastic vector of the classical PSO version is given by

~ψψψ
t

i = c1φ1
(
~pti − ~xti

)
+ c2φ2

(
~gt − ~xti

)
. (2.31)

In order to validate this PSO version as rotationally invariant, and also scaled and
translated invariant, the transformed stochastic vector ~̂ψψψti must hold the rules described in
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Equations 2.24 and 2.28. The transformed stochastic vector ~̂ψψψti is given by

~̂ψψψti = c1φ1
(
~̂pti − ~̂xti

)
+ c2φ2

(
~̂gt − ~̂xti

)
= c1φ1

(
sQ~pti +~t− sQ~xti −~t

)
+ c2φ2

(
sQ~gt +~t− sQ~xti −~t

)
= sQc1φ1

(
~pti − ~xti

)
+ sQc2φ2

(
~gt − ~xti

)
= sQ

(
c1φ1

(
~pti − ~xti

)
+ c2φ2

(
~gt − ~xti

))
= sQ~ψψψ

t

i.

(2.32)

Equation 2.32 uses both Equations 2.24 and 2.31. The particle’s position is defined
as

~xt+1
i = ~xti + w~vti + ~ψψψ

t

i (2.33)

and for ~̂xt+1
i is given by

~̂xt+1
i = ~̂xti + w~̂vti + ~̂ψψψti

= sQ~xti +~t + sQw~vti + sQ~ψψψ
t

i

= sQ
(
~xti + w~vti + ~ψψψ

t

i

)
+~t

= sQ~xt+1
i +~t,

(2.34)

where now Equations 2.24 and 2.33 are used. The construction of the stochastic vector and
position update rule of the classical velocity update equation given in Equations 2.32 and
2.34, respectively, satisfy the respective transformation rules described in Equations 2.28
and 2.24, ∀Q ∈ Orth+. Hence, the classical velocity update equation is scale, translation
and rotationally invariant.

2.8.2 Rotationally variant PSO version

The stochastic velocity vector of another well-known PSO version is given by

~ψψψ
t

i = c1ΦΦΦ1
(
~pti − ~xti) + c2ΦΦΦ2(~gt − ~xti

)
, (2.35)

where ΦΦΦl=1,2 is a diagonal random matrix1 uniformly distributed between [0, 1]. Similarly,
the transformed stochastic velocity vector is derived by

~̂ψψψti = c1Φ̂ΦΦ1
(
~̂pti − ~̂xti

)
+ c2Φ̂ΦΦ2

(
~̂gt − ~̂xti

)
= c1Φ̂ΦΦ1

(
sQ~pti +~t− sQ~xti −~t

)
+ c2Φ̂ΦΦ2

(
sQ~gt +~t− sQ~xti −~t

)
= sc1Φ̂ΦΦ1Q

(
~pti − ~xti

)
+ sc2Φ̂ΦΦ2Q

(
~gt − ~xti

)
.

(2.36)

1 Sometimes this PSO version has another notation where the diagonal random matrices are represented
by a vector of random numbers.
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Since ~̂ψψψti is the summation of two difference vectors, it follows from Equation 2.28 that the
required transformation between ~̂ψψψti and ~ψψψ

t

i is given by

~̂ψψψti = sQ~ψψψ
t

i

= sQ
(
c1ΦΦΦ1

(
~pti − ~xti

)
+ c2ΦΦΦ2

(
~gt − ~xti

))
= sc1QΦΦΦ1

(
~pti − ~xti

)
+ sc2QΦΦΦ2

(
~gt − ~xti

)
.

(2.37)

When comparing the transformation obtained in Equation 2.36 to the required transfor-
mation in Equation 2.37, satisfaction of scale and frame invariance requires

Φ̂ΦΦlQ = QΦΦΦl

∴ Φ̂ΦΦl = QΦΦΦlQ
T , for l = 1, 2 and ∀Q ∈ Orth+.

(2.38)

Since the relation between Φ̂ΦΦl and ΦΦΦl has to hold ∀Q ∈ Orth+, the solution for Equation 2.38
is

Φ̂ΦΦl = ΦΦΦl = alI for l = 1, 2, (2.39)

a1 and a2 are any real scalar values. If these values are uniform random scalars, this
PSO version reduces to the rotationally invariant one. However, Φ̂ΦΦl and ΦΦΦl are random
matrices generated independently. Thus, rotational variance is not satisfied. By scaling
the components in the classical velocity update equation, both the vector magnitudes
and vector directions are stochastically varied, which introduces both magnitude and
directional diversity.

Accepting this PSO version as rotationally variant, let substitute Q = I and assume
that the random matrices Φ̂ΦΦl = ΦΦΦl are generated to be equal for the remainder of the
investigation to evaluate only the scale and translational variance. Following the previous
Equation 2.33, the transformed position update equation for ~̂xti is given by

~̂xt+1
i = ~̂xti + w~̂vti + ~̂ψψψti

= s~xti +~t + sw~vti + s
(
c1ΦΦΦ1

(
~pti − ~xti

)
+ c2ΦΦΦ2

(
~gt − ~xti

))
= s

(
~xti + w~vti + c1ΦΦΦ1

(
~pti − ~xti

)
+ c2ΦΦΦ2

(
~gt − ~xti

))
+~t

= s~xt+1
i +~t.

(2.40)

Equation 2.40 shows that this PSO version is strictly invariant of scale and translation,
since it satisfies Equation 2.24 exactly, but is rotationally invariant as Equation 2.36 does
not satisfy Equation 2.37 exactly.

This mathematical tool is used later in Section 3.3 to prove that ISAPSO algorithm
is strictly rotationally invariant in the attraction phase of the algorithm and rotationally
invariant in a stochastic sense when the swarm is in the repulsion phase.
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2.9 Versions of particle swarm optimization algorithm
This section describes six algorithms related to the thesis: (Section 2.9.1) attractive

and repulsive (ARPSO), which is a diversity-guided algorithm; (Section 2.9.2) gradient-
based PSO (GPSO); (Section 2.9.3) diversity-guided hybrid PSO based on gradient
search (DGHPSOGS); (Section 2.9.4) a standard PSO (SPSO); (Section 2.9.5) Wilke PSO
(WPSO); and (Section 2.9.6) Bonyadi PSO (BPSO). This section also discusses about the
functioning of each algorithm, highlighting their main advantages and drawbacks.

2.9.1 Attractive and repulsive PSO – ARPSO and ARPSO*

The classical PSO tends to suffer from premature convergence when applied to
highly multimodal test functions. One of the reasons of this fact is due to the decrease
of the swarm’s diversity during the search procedure which leads to a fitness stagnation
of the swarm. In (VESTERSTRØM; RIGET, 2002), the authors raise the hypothesis
that maintenance of high diversity is crucial for preventing premature convergence in
multimodal optimization. This hypothesis boosted the development of two algorithms:
ARPSO and ARPSO*. Both versions of the algorithm differ in the stop criterion only. The
ARPSO algorithm uses a diversity measure to alternate between exploring and exploiting
behavior through two phases: attraction and repulsion. The measure is expressed as

diversity(~xt) = 1
n× |L|

×
n∑
i=1

√√√√√ d∑
j=1

(xtij − xtj)2, (2.41)

where |L| is the maximum radius of the search space, xtij is the j-th dimension of the
ith particle at t iteration, and xtj is the j-th dimension of the average position over all
particles. By measuring the diversity of the swarm, the algorithm alternates between those
two phases according to

~vt+1
i = wt~vti + dir ×

[
c1φ̇

t
i

(
~pti − ~xti

)
+ c2φ̈

t
i

(
~gt − ~xti

)]
, (2.42)

subject to

dir =

−1 diversity < dlow

1 diversity > dhigh
. (2.43)

In the attraction phase (dir = 1), the swarm is contracting and consequently the
diversity value decreases. When the diversity value drops below a lower bound, dlow, the
swarm switches to the repulsion phase (dir = −1). When the swarm reaches the upper
bound, dhigh, the swarm switches back to the attraction phase. The ARPSO algorithm
alternates between both phases of attraction and repulsion during the whole search process.

Despite of attraction and repulsion mechanism of ARPSO algorithm, which adds
the features of escaping from local minima and improves its search ability, the algorithm



2.9. Versions of particle swarm optimization algorithm 59

suffers from the lack of fine-tuning feature. Eventually, the valley of the global minimum of
a multimodal function will be reached, and the algorithm will be limited to exploit it until
the diversity drops below dlow parameter. The feature of escaping from local minima with
diversity control is probably the one that also weakens the fine-tuning. The stop criterion
of ARPSO algorithm is defined as the maximum number of evaluations of the objective
function which is 2000 times the number of dimensions of the function.

The ARPSO* algorithm defines the stop criterion to be 200000 evaluations without
fitness improvements. This ARPSO* version results in better performance than the original
ARPSO. However, the comparison between the two versions seems to be unfair, since more
search time is given to the weak fine-tuning to improve the final result.

2.9.2 Gradient-based PSO – GPSO

Noel’s work (NOEL, 2012) came up with an important discussion about determin-
istic and non-deterministic approaches in optimization problems. On the one hand, the
stochastic optimization algorithms perform global search but waste computation effort by
applying random search. On the other hand, deterministic algorithms converge rapidly but
may get stuck in local minima of multimodal functions. Keeping this in mind, a hybrid
optimization algorithm, referred as GPSO, was proposed. This algorithm combines the
strengths of stochastic and deterministic approaches and tries to avoid their weaknesses.
The GPSO algorithm uses the classical PSO with velocity update equation described by
Equation 2.3, and gradient-based local search algorithm to achieve faster convergence and
better accuracy of the final solution without getting trapped in local minima.

The GPSO algorithm avoids the use of inertia weights and constriction coefficients
which may lead to a local minimum if improperly chosen. After each iteration of the
algorithm, it is applied the BFGS method (see Section 2.7 for more details) under five
iterations to perform local search. The initial guess of the Quasi-Newton algorithm is the
global best position found by the PSO algorithm. The Quasi-Newton algorithm uses the
second derivative (Hessian matrix) and makes use of information about the curvature in
addition to the gradient information. The authors of the GPSO algorithm discovered that
performing the local search periodically, i.e., after each PSO iteration instead of every ten
PSO iterations, yielded better results for multimodal functions.

Although the GPSO algorithm can fine-tune the global best position at each
iteration of PSO, there is no feature to escape from local minima if the global position
is trapped in a valley of a multimodal function. The only mechanism of escaping of this
condition is to hopefully wait for a particle to fly over another valley deeper than the
current one where the global best particle is. Consequently, the position of this particle
will become the new global best position and the fine-tune (with Quasi-Newton algorithm)
will get this position as the starting point. In the worst case, the whole swarm will be in
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one valley, giving no chance to escape from that pitfall and ending up with one suboptimal
solution of the problem.

2.9.3 Diversity-guided hybrid PSO based on gradient search – DGHPSOGS

A diversity-guided hybrid PSO based on gradient search is proposed to improve
the search ability of the swarm in (HAN; LIU, 2014). To obtain better performance, an
adaptive PSO algorithm is used based on (SHI; EBERHART, 1998a), where the inertia
weight is computed as a function of the number of iterations according to the Equation 2.7.
The idea of attractive and repulsive schemes is also presented in this approach. The particle
velocity update equation is expressed as

~vt+1
i = wt~vti + c1φ̇

t
i

 −∂f/∂~xti
|| − ∂f/∂~xti||

− c2φ̈
t
i


(
~gt − ~xti

)
diversity(~xt) + ξ

, (2.44)

where the second term corresponds to the normalized gradient direction related to the
partial derivatives of ~xti, and ξ in the third term is a predetermined small positive number,
to ensure the denominator will never be equal to zero.

The proposed hybrid method combines random search and semi-deterministic
search in one algorithm. First, an adaptive PSO (APSO) is used to perform random search
while the diversity of the swarm is less than a predetermined threshold (dlow). The particle
velocity update equation of APSO is defined in Equation 2.6 with time-varying inertia
weight. When the swarm loses its diversity, the particles’ velocity update equation switches
to the Equation 2.44 and the algorithm performs a semi-deterministic search while the
diversity is above the same threshold (dlow). The search alternates between Equations
2.6 and 2.44, based on the diversity value of the swarm. Equation 2.6 may cause the
swarm to loose its diversity and get stuck in local minima with high likelihood, whereas
Equation 2.44 can keep the diversity of the swarm adaptively as well as search in the
negative gradient direction, which may increase the likelihood of finding a global minimum.

Despite the new idea proposed for hybridization, the parameters of DGHPSOGS
seem to be very problem-dependent. The authors had to set up, for each test function,
different values for the diversity threshold, cognitive and social coefficients to find interesting
results. It is also worth noting the second and third terms of Equation 2.44. It seems
contradictory to search in the negative gradient direction of each particle position (second
term), i.e., in the direction of the local minimum, and repel the particles at the same time
(third term). Also, only one threshold is defined, the lower bound dlow. Therefore, the
process of repelling particles does not seem to last long enough to properly escape from
local minima, once the diversity value quickly restores its level above the dlow threshold,
forcing the swarm to use the APSO again, i.e., the particles tend to crowd as quickly as
possible again.
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2.9.4 Standard PSO – SPSO

This PSO version was developed by Maurice Clerc in (CLERC, 2012b) and later
updated by Mauricio Zambrano-Bigiarini in (ZAMBRANO-BIGIARINI; CLERC; ROJAS-
MUJICA, 2013). This version is known as Standard Particle Swarm Optimization (SPSO),
which is an attempt to create a PSO with a velocity update equation modified in a
geometrical way in which is not dependent of the coordinate system, since classical
PSO version has biases in the direction of the axes (SPEARS; GREEN; SPEARS, 2010;
MONSON; SEPPI, 2005).

Such PSO version generates a random point in a perfect hyper-spherical distribution
formed by two arguments: i) center of gravity among the current particle’s position, a
random point between the particle’s position and the local memory, and another random
point between the particle’s position and the global memory; and ii) a radius between the
particle’s position and the center of gravity. The center of gravity is denoted as ~cti and
performed by

~cti = ~xti + ~Pt
i + ~Gt

i

3 , (2.45)

where vectors ~Pt
i and ~Gt

i are computed, respectively, as

~Pt
i = ~xti + c1~̇φφφ

t
i �

(
~pti − ~xti

)
(2.46)

and
~Gt
i = ~xti + c2~̈φφφ

t
i �

(
~gt − ~xti

)
. (2.47)

The velocity update equation of this PSO version is defined as

~vt+1
i = wt~vti +H

(
~cti, ||~cti − ~xti||

)
− ~xti, (2.48)

where function H(·, ·) is performed according to the Algorithm 4. The search distribution
of a particle is obtained in this case as a d-dimensional sphere, which is invariant by
rotation around its center, i.e. the search distribution is not modified when the surface
response of the function is rotated.

Algorithm 4 H(·, ·) function to draw a random number in a hyperspherical shape.
1: function H(~c, r)
2: ~z← N (0, I) . draw sample from a standard normal distribution
3: ~z′ ← ~z/||~z|| . Normalize vector
4: a← U(0, r) . draw sample from an uniform distribution
5: ~y = ~c + a ∗ ~z′
6: return ~y
7: end function
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2.9.5 Wilke PSO – WPSO

In (WILKE; KOK; GROENWOLD, 2007a; WILKE; KOK; GROENWOLD, 2007b),
the authors investigated whether PSO is invariant of the scale, rotation and translation
in which an objective function is posed. The paper showed that linear velocity update
equation lacks directional diversity, resulting in particle trajectories that collapse to line
searches. On the other hand, the classical velocity update equation maintains diverse
particle trajectories. Additionally, the authors provided a formal mathematical proof to
show that linear PSO is scale and frame invariant, whereas classical PSO lacks rotational
invariance.

Beyond the analyses of scale, rotation and translation, the authors also proposed
a new PSO version, herein termed as WPSO, to illustrate that diversity and invariance
are not necessarily exclusive. The velocity update equation is rotationally invariant in
a stochastic sense and at the same time directionally diverse. This is achieved through
consistent small perturbation in the direction of the local (~p − ~x) and global (~g − ~x)
memories of the swarm by multiplying the above vectors with an independent random
rotation matrix W.

It is important to mention that building a proper orthogonal matrix W is usually
computationally expensive, since several matrix-by-matrix multiplications are required.
WPSO algorithm uses the exponential map through a simple series method (MOLER;
LOAN, 2003). The general series expansion of an exponential map is given by

Wt
i = I +

k∑
i

1
i!

(
απ

180
(
A−AT

))i
, (2.49)

where I is the identity matrix, A is a d × d random matrix with each entry Aij ∼
U(−0.5, 0.5), and α is a real scaling factor representing the perturbation against the
directions of each memory. Finally, the velocity update equation is formulated according
to

~vt+1
i = wt~vti + c1φ̇

t
iẆt

i

(
~pti − ~xti

)
+ c2φ̈

t
iẄt

i

(
~gt − ~xti

)
. (2.50)

As a result, the velocity update equation is strictly scale and translation invariant,
and rotationally invariant in a stochastic sense. The authors demonstrated that the WPSO
may outperform the classical PSO for test functions with a single local minimum. In
addition, the performance of the WPSO is comparable to the performance of the classical
PSO for the multimodal test functions, with the added advantage of being invariant of
the reference frame.

2.9.6 Bonyadi PSO – BPSO

This paper examines several issues associated with PSO algorithm (BONYADI;
MICHALEWICZ; LI, 2014; BONYADI; MICHALEWICZ, 2014). The main issues outlined
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are: i) stagnation of particles in some points in the search space; ii) inability to change
the value of one or more decision variables; iii) poor performance when the swarm size is
small; iv) lack of guarantee to converge even to a local optimum (local optimizer); v) poor
performance when the number of dimensions grows; vi) and sensitivity of the algorithm to
the rotation of the search space. As an alternative to overcome these issues, a new general
form of velocity update equation for the PSO algorithm is proposed.

This variation is based on WPSO (WILKE; KOK; GROENWOLD, 2007b) in which
the perturbation of the movement vector contains two parts: magnitude perturbation and
direction perturbation. The magnitude perturbation diversifies the step size of particles
movement (WILKE; KOK; GROENWOLD, 2007a), while the direction perturbation
guarantees the direction diversity in the swarm. These perturbations are important for the
exploitation and exploration ability of the algorithm as was studied by (WILKE; KOK;
GROENWOLD, 2007a). Note that if a small magnitude perturbation with large direction
perturbation is applied to a particle, then the particle behaves more exploitatively. However,
if the magnitude perturbation is large, then the particle behaves more exploratively. The
new algorithm is called BPSO. The authors showed that this version of PSO with its
new form of the velocity update equation addresses all primary issues (stagnation, local
convergence and rotation variance) at the same time under some identified conditions.
Equation 2.51 shows the velocity update equation of BPSO for the proposed specific model,

~vt+1
i = wt~vti + c1φ̇

t
i

(
N
(
~pti, σ̇I

)
− ~xti

)
+ c2φ̈

t
i

(
N
(
~gt, σ̈I

)
− ~xti

)
, (2.51)

where σ̇ and σ̈ are the variances of the normal distribution N (~p, σ̇I) and N (~g, σ̈I),
respectively. In order to perform exploration in the earlier stages and exploitation in the
later stages, larger values of variance at the beginning of the optimization and smaller
values at the later stages are preferable. In this way, the authors proposed a dynamic
variance during the search process in the form of σkt = hkt(·, ·) for k = 1, 2. In this case,
the normal distributions become N (·, hkt(·, ·)I). There might be many different ways to
design the function hkt, and each may have a different impact on the performance of
the algorithm. The authors preferred to use a function based on the Euclidean distance
between ~x and ~p or ~x and ~g for h1t and h2t. The function h1t = h2t = ht is defined as

Dt = ht(~y,~z) =


lDt−1 if yi = zi for all i,

l

√
d∑
i=1

(
yi − zi

)2
otherwise,

(2.52)

where ~y and ~z are two input vectors and l > 0 is a constant. Note that whenever the two
inputs of the functions h~y,~z are equal, the previous calculated distance is used instead.
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2.10 Clerc’s rules
In (CLERC, 2012a), Maurice Clerc discusses about the prudence a practitioner

must have when comparing two stochastic algorithms. The author proposed five rules to
make the comparison fair enough between two metaheuristics. The rules are stated as
follows:

• Rule 1: Never trust biased problems for comparisons.

• Rule 2: Be sure that the estimated performance has converged reasonably.

• Rule 3a: Never trust just one performance criterion.

• Rule 3b: Always perform a statistical test.

• Rule 4: For reproducible results, do specify the word size.

• Rule 5: For reproducible results, do specify the Random Number Generator (RNG)
that is used, including its parameters, if any (like the seeds).

Rule 1 states the problem is biased when its solution is in one of the following
positions: center, axis, or diagonal. The works (JANSON; MIDDENDORF, 2007; SPEARS;
GREEN; SPEARS, 2010) explain this phenomenon whose PSO algorithm wrongly admits
the solution is in the middle of the search space. Clerc’s work (CLERC, 2012a) also
emphasizes the higher density of particles near the center of the search space. Such
phenomenon is also presented in GA (SALOMON, 1996), which may indicate that to
reliably evaluate algorithms the test functions must be at least shifted from the center.

Rule 2 affirms that a small number of executions can lead to misleading results.
An arbitrary maximum number of executions t1 might indicate that an algorithm A is
better than an algorithm B. However, another arbitrary number of executions t2, such
that t1 � t2, points to algorithm B better than A. This indecisiveness about the best
of two algorithms regarding the number of runs could be solved with the Law of Large
Numbers (LLN) (DURRETT, 2010). LLN says that the average of t independent trials
tends to the expected value as t → ∞. The weak LLN admits an error ε > 0, thus the
probability that the average value and the expected value differ by more than ε tends to
0 as t → ∞. Let S = e1 + e2 + . . . , et be the sum of independent trial process ei with
continuous density function f , finite expected value µ, and finite variance σ2. Then, for
any real number ε > 0, the probability must satisfy

lim
t→∞

P

∣∣∣∣St − µ
∣∣∣∣ ≥ ε

 = 0. (2.53)
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The Chebyshev’s Inequality states that

P

∣∣∣∣St − µ
∣∣∣∣ ≥ ε

 ≤ σ2

tε2 . (2.54)

However, the practitioner must have the expected value (µ) and variance (σ2) along with
the required error (ε) to accomplish the reliable number of experiments t. Obviously,
in the context of optimization tasks, µ and σ2 are not defined before the algorithm’s
run. Thus, LLN becomes impractical. Although Clerc states that the number of runs t is
problem-dependent, a method to find a reasonable value for t is provided later in Section
3.2.3.

Rule 3a and 3b argue the relative independence among the performance measures
(criteria). Let criteria φ1 and φ2 be the measures used to evaluate algorithms A and B.
The algorithm A seems better than algorithm B with respect to the criterion φ1, but
algorithm A performs worse than the algorithm B with respect to criterion φ2. The above
scenario contributes to the statement that Rule 3a must be true at least for a small number
of executions. Similarly, Rule 3b avoids the misunderstanding of an algorithm A (or B)
be better than algorithm B (or A) by chance. To comply with both rules, two common
criteria are used to evaluate the algorithms: average error rate and average success rate.
In addition, two non-parametric hypothesis tests, named Friedman’s and Wilcoxon’s tests,
are applied to evaluate the statistical significance of results.

Rule 4 is related to the numbers internally coded in the computer as words of b
bits, assuming 2b different values. All algorithms developed here are coded in MATLAB®

2018a whose floating-point numbers with double-precision data types according to IEEE®

Standard 754 for double precision (INSTITUTE; ELECTRICAL; ENGINEERS, 1985;
INSTITUTE; ELECTRICAL; ENGINEERS, 2008) are used. Therefore, values stored as
double require 64 bits.

Rule 5 concerns about the Pseudo-Random Number Generator (PRNG). Some
experimental tests derived from the Clerc’s work showed that there is no relation between
the quality of the randomness and the performance of the algorithm. In other words, one
may have good performance with a bad PRNG, e.g., 3 bits per word, but on the other
hand the performance may increase with a better PRNG, like 32 bits per word. In this
paper, all codes use the 64-bit version of Mersenne Twister (MT19937-64) (MATSUMOTO;
NISHIMURA, 1998) and all random numbers are drawn from a uniform distribution
U(0, 1), unless otherwise stated.

2.11 General formulation of optimization problems
Before proceeding with the proposed enhancements of this thesis, this section

poses a general optimization problem by considering a two dimensional arbitrary function,
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without loss of generality for higher dimensions, as many computing and engineering
applications lie in optimizing an ordinary function. One can assume that the optimization
problem is to find a global minimum, i.e., the function f to be minimized, since maximizing
f is equivalent to minimizing −f . This statement is true for all numerical simulations
found later in Chapter 4 by considering both benchmark suite: De Jong and CEC 2017.

The search space of a problem is large and highly dimensional, therefore any
known optimization technique faces difficult challenges to reach feasible results. A general
unconstrained optimization problem in a d-dimensional space can be defined as

Given f : Rd → R

Find ~xopt | f(~xopt) ≤ f(~x),∀~x ∈ Rd,
(2.55)

where f is an objective function that is to be minimized, ~x is a cadidate solution represented
by a vector, i.e., a point in Rd dimensional space, and ~xopt is the optimal solution
known as global minimum. When f is highly multimodal, any classical deterministic
approaches such as gradient descent and Newton’s method can easily fall into one of
the local minima, depending on the initial guess (HORST; TUY, 1996). Beyond that,
some optimization problems have no closed form of f . Due to the lack of a functional
representation, standard deterministic approaches such as find ~x | ∇f(~x) = 0 are not
applicable, then the minimization of the function is not straightforward.

Particle swarm optimization algorithms work with and without the functional
representation of the objective function f . Therefore, they belong to a class of metaheuristic
optimization approaches and are suited for black box optimization. As optimization tasks
are NP-hard problem, they intrinsically call for stochastic search techniques which can
find a solution at least near to the global optimum.

In order to deepen the problematization of this thesis, the following equation

f(x) = x6 − 4x5 − 3x4 + 16x3 + 6x2 − 6x− 1, (2.56)

a one-dimensional six degree polynomial function with real roots, is yielded as a toy
example to explain important topics. This polynomial function is multimodal and not
convex. The multimodal functions are those with multiple local optima. A local optimum
is a solution which is better than all its immediate neighbor solutions.

The polynomial function depicted in Figure 5 was constrained in the search domain
x ∈ [−2, 3.6] for simplicity in viewing. One can note three minima in the constrained
search space R. Note that two out of three minima are local optima, i.e., there are no
better solutions around them. This polynomial function has only one global optimum,
which is the best solution among all local minima.

A function is said convex if a straight line segment between any two points on the
graph of the function lies above or on the graph. For instance, the polynomial function
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Figure 5 – Six degree polynomial function defined in Equation 2.56.
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presented in Figure 5 is not convex considering the whole search space. However, if the
domain is constrained, such that S = {x | x1 ≤ x ≤ x2} ⊂ R, it becomes easy to show
that:

∀x′1, x′2 ∈ S,∀t ∈ [0, 1] : f(tx′1 + (1− t)x′2) ≤ tf(x′1) + (1− t)f(x′2),

and the function is strictly convex if x′1 6= x′2 and t ∈ (0, 1). For visualization sake, the
Figure 5 shows an arbitrary test of convexity with a straight line between [x1, x2].

A deterministic optimization algorithm such as gradient descent or Newton’s method
would certainly find a local minimum (or global minimum) with the best performance. This
function concedes the first- and second-order derivatives which would indicate the rate of
change of the function at each iteration of the deterministic algorithm. These features also
indicate the correct side to make the movement in the search domain, considering the initial
guess at x0, where the gradient scheme expects to reach f(x0) ≥ f(x1) ≥ . . . ≥ f(xt),
where xt corresponds to a point at a non-prohibitive computing iteration number t where
the desired minimum is found.

The fundamental drawback of those deterministic approaches is that the practitioner
must set the initial guess. If the quality of the initial guess is not good enough, i.e., the
initial guess is not in the correct basin of attraction (the basin where the global optimum
actually is), for instance between [x1, x2] in the Figure 5, then the deterministic algorithm
will converge to a local minima with no chances to escape. SAPSO and ISAPSO algorithms
embed those deterministic features by using the negative gradient at a candidate solution
point of a function. This information reduces the effect of random walk of each particle in
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the swarm. In addition, the diversity control of the swarm can avoid local optima as a final
result. Once the clustering of particles is detected, a trigger takes place and makes the
swarm disperse throughout the search space. The mechanism of attraction and repulsion
of particles is the one related to the trade-off between exploration and exploitation of the
space. This mechanism is explained in detail in Chapter 3.
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3 Enhancements for PSO: SAPSO, rotation
and information exchange, and ISAPSO

This chapter outlines a detailed explanation of all contributions supplied by this
thesis. The organization of this chapter is divided in chronological order of three parts:
i) first the SAPSO algorithm is presented (SANTOS et al., 2018), ii) a rotation and
information exchange is discussed, and iii) later the ISAPSO algorithm is reported as
a final outcome of this thesis. Herein, the SAPSO algorithm is considered the starting
point for enhancements in particle swarm. The current chapter also dedicates much
attention to the exploration versus exploitation trade-off. This discussion is of interest
to fully understand the SAPSO algorithm. Beyond that, the rotation and information
exchange bring back the foundations of PSO algorithms whose performance is the essential
motivation of this analysis. A method to define the number of executions is also explained
in this section. This method selects a reliable number of experiments based on a set of
benchmark functions, although it also works with only one objective function. This chapter
ends with the description about ISAPSO algorithm, which is an enhancement proposed
for SAPSO algorithm. Besides, a mathematical proof of the property rotation invariance
based on Section 2.8 is formulated.

3.1 SAPSO: semi-autonomous particle swarm optimizer
The main contributtion of this method is to alternately use gradient information

and stochastic search based on the current global best position found so far by the entire
population to guide the search towards the global minimum. Both directions are used
individually and independently by each particle of the swarm. Some particles will be flying
in the direction of the global best position while others will be investigating their own
neighborhood area. Therefore, the particles are referred as autonomous. Similarly, the
SAPSO algorithm can be classified as an individual memetic algorithm (MOSCATO, 1989;
HART; KRASNOGOR; SMITH, 2005), since each particle alternates between global and
local search. Although an external decision taken by the swarm plays role in the final
direction of the particle, which is discussed next.

Even though the particles can take individual decisions at different time during
the search process, they are under a general rule of attraction and repulsion controlled by
the swarm’s diversity. Thus, the final direction of a particle is not fully determined by its
own directive. In fact, the word semi arises due to this partial control of movement that a
particle has, which is only completely defined with the swarm’s choice between the phase
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of attraction or repulsion. In summary, it is worth noting that the two important choices
are taken at each iteration of SAPSO algorithm as follows:

1. The particle’s choice to follow the gradient information of its position in the search
space or to follow a stochastic search based on the global best position found so far
by the swarm. This choice depends on the particle’s current position in the search
space. If the particle assumes that it is in a local minimum (a method to detect local
minima is later described in Section 3.1.3), then it chooses to follow in the direction
of the global best position, otherwise it chooses the gradient direction.

2. The swarm’s choice to be in the attraction or repulsion phase. This choice depends
on the diversity value of the swarm at each iteration of the algorithm. A high
diversity value places the swarm in the attraction phase. The repulsion phase is used
when the diversity value is low (see Section 2.9.1 to review the diversity controlling
mechanism).

The mechanism of the SAPSO algorithm brings two strong features to avoid local
minima during the search process: (i) each particle of the swarm has the ability to escape
from local minima through its own decision of following the global tendency of the swarm
after locally search an area of the space; (ii) the entire swarm can assume a repulsion
scheme for a period of time and it avoids a suboptimal solution to the optimization
problem.

Another interesting feature is that in the first iterations of the SAPSO algorithm,
each particle is properly investigating its neighborhood through the gradient information,
reducing the random walks influence and optimizing the search process. It is also important
to highlight the SAPSO algorithm determines a sort of “individual exploitation”, but it
also maintains the traditional exploration regarding the scattered particles at the beginning
of the execution. In the following subsection, a self-contained example of the algorithm is
explained.

3.1.1 A short self-contained example of the SAPSO algorithm

As an effort to elucidate the online execution of the SAPSO algorithm, Figure 6
depicts important steps of the approach. The steps do not represent iterations in a sequence.
In fact, they represent important snapshot moments of three particles (circle, square and
diamond) in the search space that one wants to discuss. The order of movement is: circle
first, square second, and diamond third. The numbers near the valleys are indicative of
their depth, the higher the number the deeper the valley. The representative function has
nine valleys, but only five of them are highlighted, which are the most important ones for
the illustration. Note that the valley positioned at the center, which has the number 5
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associated with, is the deeper one and represents the global minimum of the conceptual
function, while other valleys are local minima.

Figure 6 illustrates two types of arrows: solid red line and dashed blue line both
with an arrowhead. The former is related to the gradient direction, i.e., the particle is using
the gradient information rather than following the global tendency. The latter indicates
the particle is following the global best particle. Also, a red letter x indicates the global
best position, which pushes the particles to its position during the search process.

Figure 6a shows the three particles using their gradient direction to investigate
their neighborhoods. All particles are in the attraction phase. As the valleys 1, 2, and 3 are
nearest the particles, Figure 6b highlights the first local minimum found by the diamond
particle, whereas the circle and square particles are on their ways to other local minima.
Figure 6c illustrates that the circle particle will start to follow the current best position,
whilst the square particle is approaching the best position in its neighborhood.

Figure 6d characterizes another local minimum found by the square particle. The
circle particle was about to follow the diamond particle, while a deeper valley was found
by the square particle. Thus, both circle and diamond particles are now on their ways to
find the position where current best particle is. Note by the Figure 6e, the circle particle
is very close to the current best particle, and the diamond particle has flown over the best
current position. Finally, Figure 6f presents the repulsive scheme where the particles are
about to repel each other.

After the repulsion design takes place, the particles active their gradient information
and attraction phase again. This behavior is presented in the Figure 6g. Mainly because of
the repulsive process, the square and diamond particles fell near the valleys 4 and 5, while
the square particle fell at the same valley 3. One can note in Figure 6h that the diamond
particle was the first one to find another valley, thus this particle turns into the current
global best solution. It is also easy to imagine that the square particle found later the
same local minimum (valley 3) and after decided to follow the global tendency. However,
while the square particle was moving in the direction of the current best position, the
circle particle finally found the global minimum of the conceptual function. Therefore,
both square and diamond particles are moving to the global best position, this is depicted
by Figure 6i.

Lastly, Figure 6j shows a clustering of particles. After this stage, the particles
would repel each other again likely the one presented in the Figure 6f. However, the global
memory is saved at the valley 5. Thus, even if another valley is found after the repulsive
phase, the particle will surely come back to the valley 5, because no other valley is deeper
than valley 5 in that conceptual function. Of course, in a real-world optimization problem,
the common is to not know where the global minimum is, thus the repulsive design is a
very important feature incorporated in the SAPSO algorithm.
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Figure 6 – A short self-contained example of SAPSO algorithm with three particles. The
numbers near each representative valley are indications of the valley depth.
The higher the number associated to the valley, the deeper the valley is.
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(d) (e) (f)

(g) (h) (i)

(j)

Source: produced by the author.
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3.1.2 The velocity update equation

As previously mentioned, each particle of the swarm can decide between follow the
negative direction of the gradient or follow the global tendency of the swarm, i.e., fly in
the direction of the global best particle. One binary variable encapsulates the decision of
the ith particle, such that Ii ∈ {0, 1}. To verify this binary variable at each iteration and
for each particle would introduce a small but inconvenient procedure in the algorithm. A
clever way to embody such idea into the velocity update equation without checking binary
variables is as follows:

~vt+1
i = wt~vti + dir ×

[
I ti c1φ1

(
~gt − ~xti

)
︸ ︷︷ ︸

social component

+
(
I ti − 1

)
c2φ2∇f(~xti)︸ ︷︷ ︸

gradient component

]
. (3.1)

One can note that when Ii = 0, the so called social component will be zero and
the gradient component is applied in the ith particle along with the momentum, i.e., a
portion of the velocity from the last iteration. The gradient component places the particle
in the direction of the steepest descent from the objective function, since the algorithm is
minimizing the objective function. When Ii = 1, no gradient component is applied, but
instead, the social component takes place.

As shown extensively in (KENNEDY, 1997a), the social-only version of the PSO
algorithm (no cognitive term is used to update velocity) performs better than the cognitive-
only model (without the social term) and full model (both cognitive and social terms
are applied). As can be seen in the Equation 3.1, the social-only model is preferred in
the stochastic search phase, since the cognitive-only or full model would not have much
significance in this context. The cognitive-only would duplicate the information about
local neighborhood area of the search space with previous best position and gradient
information. This approach would lead to a premature convergence sooner. The full model
would incorporate more information than necessary, once four components is enough to
the motion of a single particle.

Since the velocities are updated stochastically, the trajectory of a particle may
cross the boundary of the search space and it may fall into a state of “velocity explosion”
(CLERC; KENNEDY, 2002). To overcome this problem, SAPSO algorithm uses a inertia
weight, a velocity limitation and a gradient clamping. The same approach is used to clamp
velocity and gradient vectors, which is the one described earlier as a velocity threshold in
the Equation 2.5. Herein, vmax is defined according to

vmax = |xmax − xmin|2 (3.2)

where xmax and xmin correspond to the maximum and minimum values of the variable.
This velocity clamping poses a limit to be maximum velocity of each particle, preventing
it from moving too far beyond the limits of the search space.
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3.1.3 The algorithmic steps

In the beginning of the algorithm, each particle is uniformly spread through the
multidimensional search space. The swarm starts with I = [0, . . . , 0] and dir = 1, which
means that each particle must investigate its own area through the negative direction of
gradient and the swarm is in the attraction phase, respectively. The nearest local minimum
(or global minimum) will be reached individually by the particles, as explained in Section
2.6. It is worth noting that each particle will converge to the local minimum closest to
its initial position, and only one of those local minima will be the global best position ~gt

among the particles at some iteration t.

The ith particle takes the decision to switch from local investigation to follow
the global tendency when Ii = 0 turns to Ii = 1. A trigger to determine the right time
this decision has to be applied is to analyse the first order derivative of the function at
∇f(~xti) = 0. However, the gradient is calculated through an approximation of partial
derivatives by a forward-differencing (see Equation 2.17), thus another approach is preferred
instead of looking for a critical point.

A straightforward process to detect whether a particle is trapped in a local minimum
is to evaluate if its fitness stagnates during sequential iterations. The ith particle has a
counter Ci which detects quite small changes of its fitness value. It seems acceptable to
evaluate this condition as follows:

|f(~xti)− f(~xt−1
i )| ≤ ε, (3.3)

where ε is a small threshold (e.g., 10−2). Whenever this condition is satisfied, the counter is
incremented, otherwise the counter resets to zero. When a predetermined cMax parameter
is reached, the particle is at the bottom of a local minimum and it is time to follow the
tendency of the global best position, thus Ii = 1 and cMax = 0 again.

The ith particle takes the decision to switch back from global investigation to
follow gradient direction again when Ii = 1 turns to Ii = 0. This decision only happens
if the particle is near enough (ne) to the global best particle (e.g., 10−5). Algorithm 5
describes the aforementioned approach about the internal decision made by each particle.
The DIST(·, ·) function calculates the Euclidean distance between two vectors.

Another important note is if the local minimum found by the ith particle is the
current best position found so far. After Ii = 1 turns to Ii = 0, the ith particle will
continue at the same area and the candidate solution will still be improved by the gradient
information again.

To summarize the steps of the SAPSO algorithm, Figure 7 shows the flowchart with
all the important phases of the proposal. It is worth pointing out that the step “update
global best position G” is able to update the global best position of the swarm by the ith
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Algorithm 5 Particles’ internal decision algorithm.
1: function AutonomousDecision(~x, I, C,~g)
2: for i = 1 to n do
3: if Ii == 0 then
4: if |f(~xti)− f(~xt−1

i )| ≤ ε then
5: Ci = Ci + 1
6: if Ci == cMax then
7: Ii ← 1
8: Ci ← 0
9: end if

10: else
11: Ci ← 0
12: end if
13: else
14: if dist(~xi, ~g) ≤ ne then
15: Ii ← 0
16: end if
17: end if
18: end for
19: return I, C
20: end function

particle. In this case, the next (i+ 1)th particle will immediately use the new global best
position in its calculus of velocity and that situation may happen at the same iteration.
This strategy brings a faster communication among the particles, as there is no need to
wait for a full iteration to use the new global best position. The GPSO algorithm uses
that same strategy, whereas ARPSO and DGHPSOGS algorithms wait for a full iteration
to update the global best position among the particles. Also, as mentioned before, both
autonomous decision and phase of attraction or repulsion are chosen after an iteration is
finished in the steps “autonomous decision” and “update dir”, respectively.

3.1.4 Exploration versus exploitation: a contradictory trade-off

Any metaheuristic must embed exploration and exploitation features. They are
both equally important and should be explored in a clever manner during the algorithm
execution time. However, in (VESTERSTRØM; RIGET, 2002), the authors raise the
contradiction of maintaining high diversity and obtaining fast convergence as both goals of
any metaheuristic. In addition, the problem with premature convergence often persists in
multimodal optimization, which results in great performance loss and suboptimal solutions.
The clustering of particles in classical PSOs seems to be formed by the fast information
flow among the particles, resulting in serious issues, such as difficulties of escaping local
optima, low diversity of the population, and fitness stagnation, i.e., the clustering might
lead to a suboptimal solution as an overall result.

As the optimization tasks are NP-hard problem, the practitioners should check
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Figure 7 – Flowchart of the SAPSO algorithm.

Source: produced by the author.

the whole continuous search space to ensure that a result is not suboptimal, and this
task would lead to a search with prohibitive time. It seems to be unanimous and to make
perfectly sense to improve the optimization algorithms to avoid suboptimal solutions
more frequently. It is also worth noting that the key to address multimodal optimization
problems and the aforementioned issues seems to be an approach that efficiently alternates
between phases of global exploration and phases of local exploitation during the execution
time, instead of just implement a transition from exploration to exploitation as is common
done throughout the literature, specially with those time-dependent approaches, such
as linear decreasing of the inertia weight (SHI; EBERHART, 1998a; RATNAWEERA;
HALGAMUGE; WATSON, 2004; ARUMUGAM; RAO, 2006). This issue is one of the
fundamental principles of the SAPSO algorithm proposed in this thesis. Once the PSO
saves the current best position (and the practitioner does not know whether it is the global
minimum) after a convergence has happened, a divergence can be applied in the swarm
without any loss of information. It sounds like a new chance to find another prominent
area of the search space is given to the particles on the same course of the algorithm
execution.

The background idea of the SAPSO algorithm is to properly investigate the search
space and to avoid premature convergence. The algorithm also escapes from local minima,
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Figure 8 – The SAPSO algorithm during runtime. The behavior of the method is expressed
by autonomous decisions of each particle and by social decisions of the swarm.

Source: produced by the author.

which is controlled by the diversity measure through a repulsive design. In Figure 8, a
particle’s view of the algorithm along with the social decision of the swarm is depicted. As
can be seen, four states (presented as circles) are depicted, representing the states that each
particle of the SAPSO algorithm can assume in the search process. Each state controls the
way a particle will move through the search space. The four states are represented by two
binary variables: dir and Ii. After each iteration, the particles can change their internal
state through the transition analysis (presented as arrows). Note that, for simplicity
purpose, the transitions that connect a state to itself are omitted. The analysis of the
diversity value can change the state of the particles as well.

The behavior of the entire population when the method starts running is to locally
investigate the search space, i.e., each particle is attentive to its own gradient information.
This is expressed by the state {10} (the left arrow without source circle represents the
initial state), which are dir = 1 and Ii = 0, respectively. The two important choices are
taken at each iteration of the algorithm, one choice is taken by the particle and the other
one is taken by the swarm. After a period of time, the global best position is already set
and each particle individually decides the moment to change its perspective of searching
towards that position. The change is controlled by a counter Ci, which is incremented
every time a sequential fitness evaluation results in almost the same fitness value as the
previous iteration. By the time the maximum number of local evaluations (cMax) with
almost the same fitness value is reached, the transition Ci = cMax is applied, the counter
Ci is reset to zero. The particle will change its behavior to the state {11}, thus it remains
dir = 1 and turns Ii = 1.

When Ii = 1, the gradient information is disregarded and the particle follows the
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tendency of the current global best position found so far. By the time the position of
the particle is near enough (ne) of the global best position, its behavior changes again
to the state {10}. This is the same previous behavior presented in the Algorithm 5. It is
important to note that both states ({10} and {11}) become quickly interchangeable among
the particles, as they will be flying at the same valley of the global best position, even
tuning and improving ~g a little, particle by particle, iteration by iteration. Of course, while
a single particle is flying in the direction of the global best position, another prominent
valley might be discovered. In this case, the swarm will move to that new position over
the next iterations.

As the particles approach each other through the attractive design (dir = 1), the
diversity measure becomes lower. This happens when each particle pass through the state
{11} at least once. The convergence trend to one of the local minima (or a global minimum)
becomes stronger at each subsequent iteration. This behavior of convergence is desirable
for fine-tuning purpose, however it may trap the entire population in a local minimum.
Thus, to avoid the local minimum as a result, the metaheuristic controls the diversity
of the entire population. When the diversity value becomes less than a predefined value
(dlow), the whole population changes to the state {-10}. Now dir = −1, which indicates a
repulsive design of the particles.

Instead of following the global tendency, the particles follow their own negative
gradient directions. Note that I1,...,n = 0 only when the transition from the state {11} (or
{10}) to the state {-10} is applied. Also note that, although the swarm is in a repulsive
phase, a single ith particle can alternate between the states {-10} and {-11} at any time
according to Ci value or the distance between the ith particle and the global best position.
The repulsive behavior will increase the diversity of the population and spread the particles
throughout the search space again. In this case, the desirable diversity is controlled by a
predefined dhigh value, which the entire population will change its behavior to the state
{10} again. In other words, each particle is far apart from each other and will investigate
its local area of the search space over again through the gradient information. Additionally,
I1,...,n = 0 only when the transition from the state {-10} (or {-11}) to the state {10} is
applied.

The state {-10} (or {-11}) is peculiar for two reasons: it guarantees the avoidance
of local minima and it also contributes to the exploration of the search space. Observe that
even if the local minimum previously investigated is actually the global minimum, there is
no problem in spreading the particles through the search space again, as the global best
position found so far is saved. Thus, if no interesting area is found when repulsive design
is applied, the particles will mostly return to the global best position ever found.
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3.2 Rotation and information exchange
In the context of PSO applications, the general focus of the works is about solving

specific optimization problems, which is generally the central contribution of the prac-
titioners’ works. The precise information of how particles move is often scarce. Due to
the lack of this information, it is not self explanatory how random numbers are drawn,
whether they are scalars or vectors. Both approaches guide the particle movement in
a different manner. Herein, two types of equations are investigated: rotation invariance
(scalar random numbers already showed in Section 2.8.1) and rotation variance (vector of
random numbers previously discussed in Section 2.8.2).

The movement of the ith particle is described by the velocity vector ~vi. The
rotationally variant PSO version is redefined here according to the following velocity
update equation

~vt+1
i = wt~vti + c1~̇φφφ

t
i �

(
~pti − ~xti

)
+ c2~̈φφφ

t
i �

(
~gt − ~xti

)
, (3.4)

where ~̇φφφti and ~̈φφφti are two uniformly distributed random vectors between [0, 1] at iteration t
(this equation is equivalent to the one with diagonal random matrices ΦΦΦl=1,2 defined in
Section 2.8.2), and wt is the inertia weight described in (SHI; EBERHART, 1998a). This
last parameter balances the trade-off between global and local search. The time-varying
inertia weight can be a positive constant, linear or nonlinear function of time. The operator
� stands for the element-wise multiplication, also known as Hadamard product (HORN;
JOHNSON, 2012). In this scenario, the element-wise multiplication embeds a wider range
motion for each particle. During the search process, while the swarm converges to promising
regions, the particles are encouraged to explore areas slightly deviated from the direction
of their local and global memories.

As a reminder, the velocity update equation related to the invariant version of PSO
is redefined as follows

~vt+1
i = wt~vti + c1φ̇

t
i

(
~pti − ~xti

)
+ c2φ̈

t
i

(
~gt − ~xti

)
, (3.5)

where φ̇t1 and φ̈t2 are two uniformly distributed random numbers between [0, 1] at iteration t.
Note that, this PSO version limits the movement of a particle to fly over combinations of ~p
and ~g. To make this distinction clear, the next sections reports a graphical demonstration
of the search distribution by considering both approaches.

3.2.1 Graphical demonstration of the instantaneous search domain

To illustrate different aspects of each PSO version, Figure 91 depicts specific
combinations of the searching vectors (~pi−~xi) and (~g−~xi) related to a particle ~xi. Herein,
1 The velocity component where inertia weight appears is present in both versions of PSO. Therefore,

the figures and discussion in this section disregard this component.
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search distribution is relative to the Distribution of all Next Possible Position (DNPP) in
(CLERC, 2012b), which is represented by sample points. Figures 9a to 9e show rotationally
variant examples and Figures 9f to 9j illustrate rotational invariant examples generated
using Monte Carlo simulations with 104 samples of ~̇φφφi � (~pi − ~xi) + ~̈φφφi � (~g − ~xi) and
φ̇i(~pi − ~xi) + φ̈i(~g− ~xi), respectively.

In Figures 9a and 9f, the vectors are given by (~pi−~xi) = [1, 2] and (~g−~xi) = [3, 0].
In order to test a different perspective, Figures 9b and 9g show the search distribution
of vectors after rotating in 45◦ counterclockwise given by (~pi − ~xi) = [−

√
2

2 ,
3
√

2
2 ] and

(~g− ~xi) = [3
√

2
2 , 3

√
2

2 ]. The following examples are specific situations to evaluate the search
distribution when: cognitive and social components have the same lengths with opposite
directions (Figures 9c and 9h), respectively, (~pi − ~xi) = [−2, 2] and (~g − ~xi) = [2,−2];
cognitive and social components with the same directions (Figures 9d and 9i), respectively,
(~pi − ~xi) = [1, 1] and (~g− ~xi) = [2, 2]; and finally cognitive and social components with
the same directions parallel to x-axis (Figures 9e and 9j) with (~pi − ~xi) = [1, 0] and
(~g− ~xi) = [2, 0], respectively.

Generally, one can see a clear difference between the search distributions of ro-
tational variant and rotational invariant versions of PSO. In Figure 9a, the probability
distribution follows a trapezoidal shape due to different random numbers mutiplied by each
component of each searching vector, whereas in Figure 9f the probability distribution is
uniform, as the same random number is multiplied by both components of each searching
vector, thus changing its magnitude only. After rotating 45◦ counterclockwise, one can note
this rotation severely modifies the search distribution of samples in Figure 9b, whereas
the rotation just rotates the uniform distribution of samples in Figure 9g. As shown in

Figure 9 – Search distribution of all possible next positions given by searching vectors
(~p− ~x) and (~g− ~x). The particle sample is at the origin ~x = [0, 0] and a total
of 104 samples make part of the search distribution.
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Figure 9c, both searching vectors have the same length with opposite directions and the
probability distribution follows a triangular shape, which guarantees directional diversity.
On the other hand, there is no directional diversity in Figure 9h, as the search distribution
collapses along the searching vectors, which in turns is not the desired behavior, specially
in the beginning of the algorithm where the exploration should be more prioritized than
exploitation. Similar case is shown in Figures 9d and 9i. The directional diversity in the
rotation invariance vanishes when both searching vectors are parallel to each other. After
rotating the parallel searching vectors 45◦ clockwise (Figures 9e and 9j), both search
distributions collapse on one line. In this scenario, no distinction is observed in relation
to the search distribution, but it is also worth to point out that the rotationally variant
version of velocity update equation (Figure 9e) is prone to a bias phenomenon (SPEARS;
GREEN; SPEARS, 2010) where the particles have some predilection in making movements
parallel to one of the coordinate axes. In this scenario, the particles would be trapped
in making movements parallel to the x-axis until a new prominent area of the search is
discovered or a stop criteria is matched.

3.2.2 Empirical average angle analysis

According to (KENNEDY, 2007) apud (SPEARS; GREEN; SPEARS, 2010), James
Kennedy has indicated that the variant version should be preferred, as it is considered to be
more exploratory. To ratify the aforesaid intuition, two experimental test were performed.
The goal is to perform both versions of PSO algorithm in test functions and evaluate the
average angle between the real (~r) and the estimated (~e) vectors, respectively, considering
and not considering random numbers in the process of updating the velocity equation.
Figure 10 shows the angle θ under consideration. One may expect that the average angle
of variant version is higher than the invariant one.

The angle is achieved according to

θ = arccos
(

~eti •~rti
||~eti|| ||~rti||

)
, (3.6)

where
~eti =

(
~pti − ~xti

)
+
(
~gt − ~xti

)
(3.7)

and

~rti =

c1~̇φφφ
t
i �

(
~pti − ~xti

)
+ c2~̈φφφ

t
i �

(
~gt − ~xti

)
for variant version,

c1φ̇
t
i

(
~pti − ~xti

)
+ c2φ̈

t
i

(
~gt − ~xti

)
for invariant version.

(3.8)

The experimental tests were conducted over four well-known test functions: Ackley
(S = {x | −50 ≤ x ≤ 50}), Griewank (S = {x | −100 ≤ x ≤ 100}), Rosenbrock
(S = {x | −5.12 ≤ x ≤ 5.12}), and Rastrigin (S = {x | −5.12 ≤ x ≤ 5.12}). Two
experiments are conducted with different configurations: 1) inertia weight is a linear
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Figure 10 – The angle θ between the estimated position ~e reached by a velocity update
equation without influence of random numbers, and the real position ~r formed
by a velocity update equation with random numbers. The random structure
~ri can be ~φφφi or φi.
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Source: produced by the author.

decreasing function of time, varying from 0.9 down to 0.4. Moreover, cognitive and
social coefficients are fixed in 2; and 2) inertia weight is 0.7298, while cognitive and
social parameters are set as 1.4962, which is similar to the ones described in (CLERC,
2012b). The PSO settings are described in Table 2. Different numbers of dimensions
are configured to evaluate whether the average angle is affected by the high number of
variables. Furthermore, the high number of iterations is intentional and serves to find out
the effect of small movements of particles after the convergence of the swarm.

Table 2 – PSO settings for variant and invariant versions. Different coefficients are used in
each configuration.

Variable Conf. 1 Conf. 2

Number of particles (n) 20 20
Number of dimensions (d) [2, 10, 30, 50] [2, 10, 30, 50]
Cognitive coefficient (c1) 2 1.4962
Social coefficient (c2) 2 1.4962
Inertia weight (w) [.9 → .4] .7298

Number of iterations (T ) 10000 10000
Number of executions (E) 50 50

Source: produced by the author.

Figure 11 presents the results based on the average angle of the swarm in each
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Figure 11 – Average θ of the swarm according to the movement of particles along the
iterations. Figures for high dimensions are depicted in Appendix A.
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iteration for both versions. The author summarizes the analysis in the two dimensional
space, since for high dimensions the behavior of average angle is rather similar (see
Appendix A to visualize figures containing the average angles in higher dimensions for
each function). In a general view, one can see that the average angle of movement along
the iterations in the variant version is higher than the invariant one, which means the
search mechanism of this version is more explorative.

Configuration 1 with values of w = 0.9 → 0.4 and c1 = c2 = 2 demonstrates a
decay and a growth in the value of average angle during the search process in both versions
of the algorithm, which is probably the process of swarm convergence, i.e., the exploration
phase decreases the average angle while the particles strongly follow the global tendency
and they are less influenced by their local memories. In the beginning of the algorithm, it
is expected that the swarm starts a process of convergence toward the global best position.
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If a particle ~xti updates its local memory ~pti at iteration t, then at the iteration t+ 1, the
cognitive component (~pt+1

i − ~xt+1
i ) becomes a zero vector ~0. In this situation, the social

component plays a total role in the directional diversity of the next particle’s movement.
Moreover, this scenario reduces drastically the search distribution and it is probably the
reason why there is a decline in the average angle values at early iterations. Nevertheless,
the exploitation phase around the global best position found so far increases the average
angle values, since both cognitive and social components are now actuating on the particles’
movement. The type of micro-searching process, i.e., small movement of particles after a
prominent area is discovered by the best particle, is a phenomenon observed in all test
functions with different number of dimensions.

Configuration 2 fixed values of w = 0.7298, c1 = 1.4962, and c2 = 1.4962, the
average angle is well-behaved during the whole search process, independently of the PSO
version. The only exception happens in the Rosenbrock function with d = 2, where the
values of angles reduce drastically after a few iterations. For a low dimension, this test
function is non-convex and unimodal with global minimum value displaced from the center
of the search space. This contributes to the search direction being trapped in only one
direction, which is pointing to where the global best position is. As a consequence, one can
observe the average angle approaching zero value, which means the real vector ~r is parallel
to the estimated vector ~e. Note that for high dimensions (Appendix A), this behavior is
less noticeable and the average angle values are similar to the ones observed in other test
functions.

There is no evidence of relation between curves of average angle and the number
of iterations or different number of dimensions. Most of the time, the angles of variant
version prevails between 20◦ and 25◦, whereas the invariant maintains below 10◦. These
findings are consistent with the argument stated by Kennedy and it might be an indicative
that the rotationally variant PSO version explores a broader range of the search space,
while converging to promising areas. On the other hand, the rotationally invariant PSO
version is prone to lean towards the estimated vector ~e most of the time, prevailing the
exploitation due the covering of a narrow region of the search space.

3.2.3 A method to define the number of executions

In this section, a general method to determine the minimum number of executions
(E) is presented. Since the expected value (µ) of a measured performance (e.g., success
rate and minimum value of a function) and the variance (σ2) can not be previously defined
before algorithm’s run (see Rule 2 defined by Clerc and discussed in Section 2.10), another
approach must be investigated to select a suitable value for E. The success rate is a
performance criterion to determine the achievement of an algorithm, i.e., whether the goal
of the optimization problem is found or not. A simple manner to evaluate the success rate
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Figure 12 – Number of experiments based on CEC 2017 optimization problems using
a rotationally variant PSO version with late information exchange among
particles.
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is formulated by

sij =

1 if fi(~x)− fi(~xopt) ≤ ξ

0 else
(3.9)

and
srij = 1

j

j∑
z=1

siz | ∀j ∈ {1, 2, . . . , E?}, (3.10)

where sij is the achievement of the algorithm regarding an optimization function fi(·) with
global minimum at ~xopt, srij ∈ [0, 1] is the actual success rate specified by the number
of executions j, ξ is a predefined error threshold empirically defined as ξ = 10−4, and
E? stands for the maximum number of executions. To find the appropriate number of
executions, the applicability of the above methodology refers to the variant version of PSO
with late exchange of information among particles.

Figure 12a highlights the success rate of the algorithm applied in the set of test
functions from CEC 2017 benchmark suite described later in Section 4.2.1. One can clearly
infer that a small number of executions (e.g., E < 50) is not enough to produce reliable
results, as the curves are highly unstable. For instance, with E < 25, the success rate in
Bent Cigar function is above 80%. However, with E > 100, the success rate is stabilizing
below 60%. Small values of E might indicate results with high success rate by chance,
whereas high values considerably decrease this random effect.

A general behavior must be considered if more than one optimization test function
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is used to evaluate the algorithms. Thus, the average value of each curve is measure by

sri = 1
E?

E?∑
j=1

srij, (3.11)

where E? = 500 in Figure 12, sri is the average number of success rate in the test function
i | ∀ i ∈ {1, 2, . . . ,m}, and m is the number of functions.

The minimum number of executions for each test function according to the maxi-
mum deviation ε is discovered as follows

ei
j←− |srij − sri| ≤ ε,∀ j ∈ {1, 2, . . . , E?}, (3.12)

where ei = j when the success rate curves stabilize. Note that, other j′ > j may satisfy
the above inequality, however the algorithm stops after j is discovered. Several values for
ε were tested during experiments, the author suggests ε = 10−4 as an initial guess for
general purpose. Finally, the average of all number of executions is defined by

E = 1
m

m∑
i=1

ei. (3.13)

It is worth to point out that the exact number of executions embeds the average
behavior of all test functions, i.e., it represents the number of executions where the results
for all test functions may be considered stable and reliable.

Algorithm 6 details the proposed method to define the average number of executions.
The inside loop (lines 4–12) performs Equations 3.9 and 3.10, respectively, the if/else
statement (lines 5–9) saves the achievement of ith function in jth execution, and line 11
performs the current jth success rate. Line 13 simply performs the average of the values
in sri. The second inside loop (lines 14–19) carries out the number of executions required
to stabilize the success rate curve of the ith function. The jth position selected, which is
the required number of executions, corresponds to the success rate value closest to the
average success rate value. The loop breaks as soon as this number is discovered (line 17).
Finally, the result of the algorithm is the average number of required executions for each
optimization problems (line 20).

The aforementioned method applied to the set of test functions is presented in
the Figure 12b. The average success rate shows the stabilized curve whose the minimum
number of executions found by the Equation 3.13 is E = 134. The result of this experiment
will be used as a reliable number of executions to analyse the comparison among PSO
versions later in Section 4.2.

3.3 ISAPSO: Invariant SAPSO
This section proposes adjustments for SAPSO algorithm principally in terms of

finding better solutions (e.g., low error rates) and reduction of computational time. In
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Algorithm 6 Algorithm to find the average number of executions.
1: function nExec(ε, ξ,m,E∗)
2: for i = 1 to m do
3: sum← 0
4: for j = 1 to E∗ do
5: if |fi(~x)− fi(~xopt)| ≤ ξ then
6: sij ← 1
7: else
8: sij ← 0
9: end if
10: sum← sum+ sij
11: srij ← sum/j
12: end for
13: sri ← AVG(sri)
14: for j = 1 to E∗ do
15: if |srij − sri| ≤ ε then
16: ei ← j
17: break
18: end if
19: end for
20: end for
21: E ← AVG(e)
22: return E
23: end function

addition, a mathematical proof is given to show that ISAPSO is strictly rotationally
invariant when the swarm is in the attraction phase, while the algorithm is rotationally
invariant in a stochastic sense in the repulsion phase. The motivations to develop this
new version comes from the theoretical and empirical studies provided by Sections 2.8,
2.9, 3.1, and 3.2 about rotational variance and invariance, separable and non-separable
functions, directional diversity, and biases toward the coordinate system. To work with
rotation invariance property is rather preferable than facing a bias phenomenon with
rotation variance property. These topics has inspired a development of a new SAPSO
version which is advisable to be used in different optimization problems.

This section is divided as follows: Section 3.3.1 is dedicated to show the new velocity
update equation of ISAPSO algorithm; differences between SAPSO and ISAPSO algorithms
are discussed in Section 3.3.2; Section 3.3.3 describes a step by step mathematical proof
about the property rotation invariance; and Section 3.3.4 provides the minimum number
of executions required to achieve reliable results based on the method described earlier in
Section 3.2.3.

3.3.1 The velocity update equation

As expected, ISAPSO algorithm is mainly based on SAPSO algorithm’s velocity
equation. However, ISAPSO algorithm introduces a rotation matrix W which is built
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by the exponential map described in Section 2.9.5. The exponential map brings a fast
alternative to build a rotation matrix for higher dimensions. On the other hand, the
rotation matrix is not exact and the final vector is approximated with the corresponding
rotation angle, as well as the magnitude of the vector is modified.

The velocity update equation of ISAPSO algorithm is defined as follows

~vt+1
i = wt~vti + dir ×

[
~Ωt
i + ~Υt

i

]
, (3.14)

where

~Ωt
i =

I
t
i c1φ1

(
~gt − ~xti

)
if dir = 1,

I ti c1φ1Ẇt
i

(
~gt − ~xti

)
else

(3.15)

and

~Υt
i =


(
I ti − 1

)
c2φ2∇f(~xti) if dir = 1,(

I ti − 1
)
c2φ2Ẅt

i∇f(~xti) else
(3.16)

The main mechanism about attraction and repulsion controlled by dir variable is
borrowed from SAPSO algorithm, but now the rotation matrix Wt

i introduces a small
perturbation in the magnitude and direction of the vectors (~gt − ~xti) and ∇f(~xti) in
the repulsion phase only. It is important to note in Equations 3.15 and 3.16 that the
perturbation in the direction of the best global memory and the gradient vector is only
used when the swarm is in the repulsion phase (dir = −1), whereas the attraction phase
has no rotation matrix. As a consequence, when the swarm is in the repulsion phase, a
small angle divergence is introduced no matter I ti = 0 or I ti = 1. One may expect to give
the particle a chance to investigate other areas of the search domain.

ISAPSO algorithm still uses the social-only model described in (KENNEDY, 1997a)
and the cognitive term is substituted by the gradient component. This is rather preferred
as the gradient information brings a deterministic characteristic to the algorithm, which
may decreases the random walk influence inherent to any metaheuristic approach. The
decreasing of random walk influence is desired in situations where a basin of attraction
is discovered by a particle, i.e., instead of flying around the discovered area governed
by biased random movements, the particle would deterministically follows the negative
direction of the gradient. Thus, much less time would be spent to examine this region.

3.3.2 Relations between SAPSO and ISAPSO algorithms

There are essential differences between both algorithms. Besides the fundamental
idea of development a new version based on finding better solutions and low computational
time, ISAPSO algorithm provides valuable difference against SAPSO one. The major
differences and relations are highlighted as follows:
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• Unlike the SAPSO algorithm, there are no heuristics to clamp velocities, gradient
vectors, or bound the search space. ISAPSO algorithm simply compresses the
searching inside the initial search domain and no bound handling is used throughout
the search process.

• In the attraction phase, ISAPSO algorithm is strictly rotationally invariant, while
in the repulsion phase, ISAPSO algorithm is rotationally invariant in a stochastic
sense, i.e., the algorithm has directional diversity by applying a small perturbation
in the vector direction of global memory and gradient information, which is rather
preferable in contrast of the way SAPSO algorithm works.

• The computational time was fastened by performing partial derivatives with forward-
differencing only when I ti = 0, whereas SAPSO algorithm always performs this
calculations.

• Both algorithms use diversity control. However, ISAPSO algorithm keeps track of
when the swarm is in the attraction or repulsion phase. This tracking ensures the
proper use of rotation matrix W t

i and guarantees no disturbance of the gradient
information when required.

• Also, both algorithms use the fast information exchange among particles, i.e., ith
particle evaluates whether its current position is better than the global memory of
the swarm, if so, it updates the global memory with ith particle’s position. Then,
i+ 1th particle moves in the direction of the actual global memory.

Beyond the above relations between both algorithms, ISAPSO algorithm has the
property rotation invariance, i.e., there is no change in the performance of the algorithm
when the rotation of the coordinate system is applied, which inplies the algorithm has
no biases in the direction of the coordinate system (SPEARS; GREEN; SPEARS, 2010).
Furthermore, there is no extra burden to match the angle of bias with the angle of the
coordinate system (WILKE; KOK; GROENWOLD, 2007a; WILKE; KOK; GROEN-
WOLD, 2007b; BONYADI; MICHALEWICZ; LI, 2014; BONYADI; MICHALEWICZ,
2014; HARIYA; SHINDO; JIN’NO, 2016) in order to have a good performance. This also
poses the algorithm to be applicable to a larger class of problems.

Although rotation invariance is desirable in this context, the authors of the work
described in (WILKE; KOK; GROENWOLD, 2007a) showed this property lacks directional
diversity when the particle is flying throughout the search space. They also presented that
rotation invariance and directional diversity are not mutually exclusive properties. From
this point of view, it is important to reestablish a directional diversity in the particle’s
movement at some extent. The rotation matrix is used to avoid the lacking of directional
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diversity, but it also provides the property rotational invariance in a stochastic sense. The
next section carries out the mathematical proof of this assumption.

3.3.3 Mathematical proof of rotationally invariant algorithm

This section provides a mathematical proof that ISAPSO algorithm is strictly
rotationally invariant when the swarm is in the attraction phase, and rotationally invariant
in a stochastic sense otherwise. The main focus is to satisfy Equations 2.24 and 2.28
previously discussed in Section 2.8. All mathematical deductions in this section have the
intention to prove indifference in rotation of the coordinate system, which is the most
important property of ISAPSO algorithm. First, it is considered a swarm of n particles in
a d-dimensional search space. The velocity vector of the ith particle is obtained from the
velocity update equation and it can be interpreted as two parts as follows

~vt+1
i = w~vti + ~ψψψ

t

i, (3.17)

where w is the inertia coefficient, ~vti is the velocity vector of the ith particle at iteration t.
This first part is considered deterministic at iteration t. The second part of the summation
is defined as stochastic and it is represented by the stochastic vector ~ψψψ

t

i.

The stochastic vector of the ISAPSO version is given by

~ψψψ
t

i = dir ×
[
~Ωt
i + ~Υt

i

]
. (3.18)

Due to the binary variables dir and I ti , there are four possible cases in this stochastic
vector:

• case 1: dir = 1 and I ti = 1;

• case 2: dir = 1 and I ti = 0;

• case 3: dir = −1 and I ti = 1;

• case 4: dir = −1 and I ti = 0.

In the following sections, each case is treated separately according to the state of
variables dir and I ti . Note that, the following mathematical proof is determined to prove
rotation invariance only. Thus, no concerning about scale and translation is observed.

3.3.3.1 Case 1: dir = 1 and I ti = 1

In this case, the stochastic vector is reduced to

~ψψψ
t

i = ~Ωt
i = c1φ1

(
~gt − ~xti

)
. (3.19)



3.3. ISAPSO: Invariant SAPSO 91

From Section 2.8, the transformed stochastic velocity vector is derived by

~̂ψψψti = c1φ1
(
~̂gt − ~̂xti

)
= c1φ1

(
Q~gt −Q~xti

)
= Q

(
c1φ1

(
~gt − ~xti

))
= Q~ψψψ

t

i.

(3.20)

In sequence, the transformed position update equation for ~̂xti is given by

~̂xt+1
i = ~̂xti + w~̂vti + ~̂ψψψti

= Q~xti +Qw~vti +Q~ψψψ
t

i

= Q
(
~xti + w~vti + ~ψψψ

t

i

)
= Q~xt+1

i .

(3.21)

The deductions presented in Equations 3.20 and 3.21 satisfy both Equations 2.24
and 2.28. Therefore, case (1) can be considered strictly rotationally invariant, i.e., when
the swarm is in the attraction phase (dir = 1) and the global tendency of the swarm is
preferred (I ti = 1).

3.3.3.2 Case 2: dir = 1 and I ti = 0

Now, considering case (2) where dir = 1 and I ti = 0, the stochastic velocity vector
is given by

~ψψψ
t

i = ~Υt
i = −c2φ2∇f(~xti). (3.22)

The transformed stochastic velocity vector ~ψψψ
t

i requires ∇f(~̂xti), but ~̂xti in this
context is the same as

~̂xti = Q~xti ⇔ ~xti = Q−1~̂xti (3.23)

Thus, optimizing deterministically ∇f(~xti) is equivalent to optimize ∇g(~̂xti) as
follows

g(~̂xti) = f(Q−1~̂xti)
∇g(~̂xti) = Q−T∇f(Q−1~̂xti).

(3.24)
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In the following, the transformed stochastic velocity vector is derived by

~̂ψψψti = −c2φ2∇g(~̂xti)
= −c2φ2Q

−T∇f(Q−1~̂xti)
= Q−T

(
− c2φ2∇f(~xti)

)
= Q−T ~ψψψ

t

i

= (Q−1)T ~ψψψ
t

i

= Q~ψψψ
t

i.

(3.25)

Finally, the transformed position update equation for ~̂xti is given by

~̂xt+1
i = ~̂xti + w~̂vti + ~̂ψψψti

= Q~xti +Qw~vti +Q~ψψψ
t

i

= Q
(
~xti + w~vti + ~ψψψ

t

i

)
= Q~xt+1

i .

(3.26)

In this form, ISAPSO algorithm is also strictly rotationally invariant in case (2)
when dir = 1 and I ti = 0. Moreover, ISAPSO algorithm is strictly rotationally invariant in
the attraction phase, independently of the state I ti be 0 or 1.

3.3.3.3 Case 3: dir = −1 and I ti = 1

The stochastic vector is reduced to

~ψψψ
t

i = ~Ωt
i = −c1φ1Ẇt

i

(
~gt − ~xti

)
. (3.27)

From Section 2.8, the transformed stochastic velocity vector is derived by

~̂ψψψti = −c1φ1
ˆ̇Wt
i

(
~̂gt − ~̂xti

)
= −c1φ1

ˆ̇Wt
i

(
Q~gt −Q~xti

)
= −c1φ1

ˆ̇Wt
iQ
(
~gt − ~xti

)
.

(3.28)

Note that the required transformation between ~̂ψψψti and ~ψψψ
t

i is given by

~̂ψψψti = Q~ψψψ
t

i

= Q
(
− c1φ1Ẇt

i

(
~gt − ~xti

))
= −c1φ1QẆt

i

(
~gt − ~xti

)
.

(3.29)
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Since the relation between ~̂ψψψl and ψl has to hold ∀Q ∈ Orth+, from Section 2.8.2
the solution is

ˆ̇Wt
i = Ẇt

i = alI
t
i for l = 1, 2. (3.30)

Exactly as before, a strict enforcement of rotational invariance reduces the ISAPSO
velocity update equation to the version presented in Section 2.8.1. In contrast, since the
velocity equation is stochastic, it is possible to satisfy Equation 3.30 in an average sense
only, letting the rotation matrix Wt

i provides small rotations.

In sequence, the transformed position update equation for ~̂xti is given by

~̂xt+1
i = ~̂xti + w~̂vti + ~̂ψψψti

= Q~xti +Qw~vti − c1φ1Ẇt
iQ
(
~gt − ~xti

)
.

(3.31)

By considering ISAPSO algorithm invariant under rotation, let assume Q = I ti and
assume the random matrices ˆ̇Wt

i = Ẇt
i are generated in the same manner, then

~̂xt+1
i = Q

(
~xti + w~vti − c1φ1Ẇt

i

(
~gt − ~xti

))
= Q~xt+1

i .
(3.32)

As a result, the ISAPSO velocity update equation is rotationally invariant in a stochastic
sense in case (3), since a small perturbation in the direction of social and gradient
components is considered by the rotation matrix W.

3.3.3.4 Case 4: dir = −1 and I ti = 0

In the last case (4), dir = −1 and I ti = 0, the stochastic velocity vector is given by

~ψψψ
t

i = −c2φ2
ˆ̈Wt
i∇f(~xti). (3.33)

Then, the transformed stochastic velocity vector is derived by

~̂ψψψti = −c2φ2
ˆ̈Wt
i∇g(~̂xti)

= −c2φ2
ˆ̈Wt
iQ
−T∇f(Q−1~̂xti)

= −c2φ2
ˆ̈Wt
iQ∇f(~xti).

(3.34)

Since the relation between ~̂ψψψl and ~ψψψl has to hold ∀Q ∈ Orth+, according to Section
2.8.2 the solution is

ˆ̈Wt
i = Ẅt

i = alI for l = 1, 2. (3.35)
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Finally, assuming Q = I and ˆ̈Wt
i = Ẅt

i are generated equally, the transformed
position update equation for ~̂xti is given by

~̂xt+1
i = ~̂xti + w~̂vti + ~̂ψψψti

= Q~xti +Qw~vti − c2φ2Ẅt
iQ∇f(~xti)

= Q
(
~xti + w~vti − c2φ2Ẅt

i∇f(~xt)
)

= Q~xt+1
i .

(3.36)

In summary, ISAPSO algorithm is strictly rotationally invariant in a stochastic
sense in cases (1) and (2), and rotationally invariant in stochastic sense in cases (3) and
(4). Cases (1) and (2) happen when the swarm is in the attraction phase (dir = 1), and
cases (3) and (4) occur when the swarm is in the repulsion phase. As previously stated,
this behavior poses a possibility to find a new local minima (maybe global optimum).
Additionally, the same local optimum can be investigated through a different angle, since
small perturbations are propagated in cases (3) and (4).

3.3.4 Number of executions based on the proposed method

The experimental results performed with ISAPSO algorithm is later examined in
Section 4.3. However, before proceeding with the next chapter, this section reports the
minimum number of experiments that will be used in the following chapter. The formal
definition of this method was explained in Section 3.2.3.

Following the same experiments previously viewed in Section 3.2.3, the method
selects the number of experiments required to stabilize the curves of success rate for
each optimization problem. The test functions are derived from CEC 2017 benchmark
optimization problems described later in Section 4.2.1. Table 3 presents the parameters
used in this simulation.

In Figure 13, two outcomes from the method are depicted. Figure 13a shows all
success rate curves considering the maximum number of experiments defined as E? = 500.
One may note the higher the number of experiments, the more stable the curves become.
For each success rate curve, a number of experiment is extracted, and the average of the
number of experiments is considered in this scenario.

As a matter of visualization, Figure 13b depicts the average success rate by
considering each of ten test functions and it highlights the minimum number of experiments.
Thus, in the result section, the numerical simulations with ISAPSO algorithm will consider
E = 55 in all experiments.
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Table 3 – ISAPSO parameters to find the minimum number of executions.

Variable Conf.

Number of particles (n) 20
Number of dimensions (d) 2

Social coefficient (c1) 1.4962
Inertia weight (w) 0.7298

Number of iterations (T ) 1000
Number of experiments (E) 500
Sequence evaluation (cMax) 3

Stop criterion (ε) 10−2

Deviation angle (α) 3◦

Source: produced by the author.

Figure 13 – Number of experiments based on CEC 2017 optimization problems using
ISAPSO algorithm with fast information exchange among particles.
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4 Experimental results and discussions

This chapter details the numerical simulations and experimental results carried
out in this thesis. The results are divided in three sections through a chronological order
of study. A brief description of each section is given below:

• Section 4.1: the first experiment evaluates SAPSO algorithm on the ability of finding
the global minimum on De Jong’s benchmark functions with the number of dimensions
set as 2, 10, 20, 30, 60, 80, 100, 120, and 150, except for the bi-dimensional ones.
After that, SAPSO algorithm is compared with the most competitive PSO algorithm,
i.e., the one with acceptable results in the first experiment. Both algorithms are
tested in multimodal functions with even higher dimensions. The computational
times required to execute the algorithms are provided based on the average of E = 20
runs. A discussion about the algorithms’ reliability related to the success rate and
the number of iterations required to reach a feasible solution is also provided. Finally,
an analysis of the diversity control is outlined between the SAPSO algorithm and
the PSO algorithms under evaluation. In addition, a relation between the average
number of times a repulsion phase occurs and the average number of iterations
required to achieve the global minimum is described.

• Section 4.2: an empirical analysis of rotation and information exchange among
particles is supplied in this section. First, CEC 2017 benchmark suite problems is
summarized. Later, numerical simulation results reports the performance of each PSO
versions under evaluation. All simulation results are based on the minimum number
of executions E = 134 found by the proposed algorithm describe in Section 3.2.3.
Further, two well-known statistical hypothesis tests are used to evaluate whether
statistical significance in the results is noted.

• Section 4.3: based on both previous enhancements and developments, ISAPSO
algorithm is detailed in this section. The methodology of evaluation of the new
algorithm is similar to the ones presented above. The results are averaged over
E = 55 executions. ISAPSO algorithm is compared in terms of performance against
seven related PSO versions, and a statistical hypothesis test is also reported.

All simulations were conducted in a PC described as follows: Operational System
Ubuntu 18.04 LTS, CPU Intel® CoreTM i7-7500U, and 8 GB of RAM. The MATLAB
R2018a environment was the programming language used to code and test all algorithms
described in this thesis.
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4.1 Results: SAPSO algorithm
Firstly, before describing the simulations and results, the benchmark optimization

problems used in the following experiments are discussed in terms of their definitions and
search domains.

4.1.1 De Jong’s benchmark problems

The test functions based on the De Jong’s benchmark optimization problems
(JONG, 1975) are exhibited in Table 4. Each function offers different challenges for any
optimization algorithms, such as: many local minima surrounding global minimum, nearly
flat regions with small gradient information, d-dimensional continuous space for searching,
and decentralized global minimum. The functions are used to assert the qualities of the
proposed algorithm, particularly on multimodal functions where the SAPSO algorithm
must be able to avoid local minima and fine-tune the global optimum as a final result.
In addition, the different challenges presented in each test function will be addressed by
the proposed algorithm and the use of gradient-based information and diversity control
mechanism will be under test of robustness, as well as the well-known test of finding the
global optimum of each function.

The Sphere (Figure 14a) and Ellipsoid (Figure 14f) test functions are unimodal, d-
dimensional quadratic function and convex, i.e., a single local minimum (which is the global
minimum) is observed. The simplicity of f1 and f6 tests the algorithms’ ability of finding
the global minimum. One can consider these functions as a baseline test of any optimization
algorithm. The Rosenbrock (Figure 14b) is another standard test function. f2 is unimodal,
non-convex and d-dimensional quadratic function with a single global minimum. This
function tests the algorithms’ ability of navigating flat areas of the search space with small
gradient information. The Rastrigin (Figure 14c) and Griewank (Figure 14d) functions are
variations of f1 with addition of cosine modulation to produce many local minima. Thus, f3

and f4 are highly multimodal. The Alpine (Figure 14h) and Levi (Figure 14i) are complex
multimodal function with lots of local minima around the global minimum. Functions
f8 and f9 have the global minimum far from the center of the default hypercube usually
used to evaluate a metaheuristic algorithm, which is interesting to test the algorithms’
ability of finding a decentralized global minimum. The Ackley (Figure 14e) test function
is widely used in the optimization literature. Function f5 is characterized by a nearly
flat outer region and a hole at the center. This function tests the algorithms’ ability of
avoiding local minima. The Schaffer N.2 (Figure 14g) and Levi N.13 (Figure 14j) are
bi-dimensional, continuous and non-convex test functions. Functions f7 and f10 are used
to test the algorithms’ ability of addressing low dimensional functions, which is suitable to
evaluate the robustness of the algorithms under these conditions.
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Table 4 – Test functions used for comparison of the algorithms.

Test function Equation Search domain

Sphere (f1)
∑d
i=1 x

2
i −100 ≤ xi ≤ 100

Rosenbrock (f2)
∑d−1
i=1 100

(
xi+1 − x2

i

)2
+
(
1− xi

)2
−5.12 ≤ xi ≤ 5.12

Rastrigin (f3) 10d+∑d
i=1

(
x2
i − 10cos

(
2πxi

))
−5.12 ≤ xi ≤ 5.12

Griewank (f4) 1 + 1
4000

∑d
i=1 x

2
i −

∏d
i=1 cos

(
xi√
i

)
−100 ≤ xi ≤ 100

Ackley (f5)
−20 exp

(
− 0.2

√
1
d

∑d
i=1 x

2
i

)
− exp

(
1
d

∑d
i=1 cos

(
2πxi

))
+ 20 + exp

(
1
) −50 ≤ xi ≤ 50

Ellipsoid (f6)
∑d
i=1 ix

2 −5.12 ≤ xi ≤ 5.12

Schaffer N.2 (f7) 0.5 +
sin2

(
x2

1−x
2
2

)
−0.5(

1+0.001
(
x2

1+x2
2

))2 −100 ≤ xi ≤ 100

Alpine (f8)
∑d
i=1 |xi sin(xi) + 0.1xi| 0 ≤ xi ≤ 20

Levi (f9)

sin2
(
πw1

)
+∑d−1

i=1

(
wi − 1

)2
(

1 + 10 sin2
(
πwi + 1

))
+w2

d

(
1 + sin2

(
2πwd

))
where wi = 1 + xi−1

4 , ∀ i = 1, . . . , d

−10 ≤ xi ≤ 10

Levi N.13 (f10)
sin2

(
3πx1

)
+
(
x1 − 1

)2
(

1 + sin2
(
3πx2

))
+
(
x2 − 1

)2
(

1 + sin2
(
2πx2

)) −10 ≤ xi ≤ 10

Source: produced by the author.

The test functions are continuous and bounded by a search domain in the form
of hypercube. Each test function has only one global minimum with value equal to zero.
The number of dimensions d is chosen according to the literature (VESTERSTRØM;
RIGET, 2002; NOEL, 2012; HAN; LIU, 2014), which is common for comparisons among
optimization algorithms.

4.1.2 Toward the global minimum

In this section, the proposed SAPSO algorithm is compared to ARPSO, GPSO
and DGHPSOGS in terms of finding the global minimum in functions based on De Jong’s
benchmark optimization problems. In all experiments, the population size for all algorithms
is 20. The cognitive and social coefficients of ARPSO, DGHPSOGS (attraction phase) and
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Figure 14 – Bi-dimensional surface of De Jong’s benchmark functions.
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GPSO are all set as 2. The gradient and social coefficients of DGHPSOGS are both 2.1
when the algorithm is in the repulsion phase. The lower bound of ARPSO and DGHPSOGS
are set as 10−6 and the upper bound of ARPSO is 0.25. Note that the parameters of
each PSO were obtained in their original papers and can be found in Appendix B in the
Table 27.

The following parameters of SAPSO are set based on empirical studies made by
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the author of this thesis and inspired by works presented in (VESTERSTRØM; RIGET,
2002; NOEL, 2012; HAN; LIU, 2014; NOEL; JANNETT, 2004). In (HAN; LIU, 2014), the
authors exhaustively test a range of c1 and c2, varying from 1 to 4. Herein, the author uses
the same range for c1 parameter, which means the importance given to the global search
direction. However, note that the c2 parameter must be very low, since it corresponds
to the gradient information of the function in the current particle’s position, varying
from 10−5 to 10−1. The SAPSO parameters: (F1, F6, F7, F9, F10) c1 = 2 and c2 = 10−2;
(F2) c1 = 2 and c2 = 10−3; (F3) c1 = 3 and c2 = 10−3; (F4) c1 = 3 and c2 = 10−2; (F5,
F8) c1 = 4 and c2 = 10−1. Also based on (VESTERSTRØM; RIGET, 2002), the lower
(dlow) and upper (dhigh) bounds are the same of ARPSO, respectively, 10−6 and 0.25 for
all test functions. The author found cMax = 3 a suitable value for all test functions.
In all experiments, the maximum number of iterations is 5000 and the total number of
executions is 20. The numerical results are shown in terms of mean best solution found in
all executions.

Table 5 exhibits the mean best solution for all test functions using four PSOs.
The proposed SAPSO algorithm found the global minimum (or very close to the global
minimum) in all test functions. Even in Rosenbrock and Levi functions where the global
minima were not exactly found, the results are close to the minimum, which can be
considered the optimal solution depending on the relaxation of the optimization problem.
In general, the SAPSO algorithm reports better convergence accuracy in terms of global
minimum values than other PSOs in all cases, followed by GPSO, ARPSO and DGHPSOGS.

Since the algorithms converged to the exact result in most functions, the author
decided to extract an analysis of convergence curves for the Rosenbrock and Levi functions,
which are the ones that no exact result was found for all algorithms. Figures 15 and
16 show the average convergence curves of all PSOs on Rosenbrock and Levi functions,
respectively, with 10, 20 and 30 dimensions.

Figure 15 shows that the proposed SAPSO algorithm clearly converges better than
the other PSOs with 5000 iterations. Also, if the maximum number of iterations was not a
stop criterion, the final results would certainly be even better, since the curves of the global
best position seem to become better positioned during the search process. The ARPSO and
DGHPSOGS algorithms suffer from fitness stagnation on Rosenbrock function after 2000
iteration, regardless of the number of dimensions. The GPSO algorithm suffers from the
same effect during the search process, however the results are quite better than ARPSO
and DGHPSOGS. The GPSO algorithm requires more iterations to fine-tune its global best
position during the search process, and in the case of 10 and 30 dimensions, the algorithm
stagnated its fitness value for a long period, whereas the proposed SAPSO algorithm is
frequently improving its global best position due to the small gradient information of the
Rosenbrock function and repulsion phases during the search process.
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Table 5 – Mean best solution found in 20 runs.

Function d ARPSO GPSO DGHPSOGS SAPSO

Sphere
10 0 0 0 0
20 0 0 0 0
30 0 0 0 0

Rosenbrock
10 2.2727 2.1698 · 10−5 1.5947 7.5115 · 10-11

20 17.7008 3.7747 · 10−5 14.1068 4.9591 · 10-10

30 28.1702 3.7954 · 10−5 23.9049 4.173 · 10-9

Rastrigin
10 0 0 0 0
20 1.4462 0 4.0295 0
30 8.7842 2.6899 20.5457 0

Griewank
10 0 0 0 0
20 0 0 0 0
30 0 0 1.2503 · 10−2 0

Ackley
10 0 0 0 0
20 0 0 0 0
30 0 0 9.3672 · 10−7 0

Ellipsoid
10 0 0 0 0
20 0.1214 0 1.85 · 10−10 0
30 2.7233 0 1.53 · 10−7 0

Schaffer N.2 2 0 0 0 0

Alpine
10 0.0011 1.0858 · 10−5 2.0650 · 10−15 0
20 2.4738 1.0512 1.0057 · 10−11 0
30 10.5205 2.7824 0.2795 0

Levi
10 0.1629 4.3924 · 10−10 1.2785 · 10−11 3.5689 · 10-13

20 0.5336 0.9280 0.1612 0.0939
30 0.7979 10.0399 2.4415 0.35

Levi N.13 2 0 1.0799 · 10−8 0 0
Source: produced by the author.

Similarly, Figure 16 presents the average convergence curves of the Levi function.
One can note that the GPSO algorithm stagnates the global best position in the iteration
1000 for dimensions 10 and 30. A long period of fitness stagnation, from iteration 500 to
3500, is also noted when the dimension is 20. This seems to be caused by the lack of any
mechanism of escaping from a local minima. Although the DGHPSOGS, ARPSO and
SAPSO algorithms have the mechanism of attraction and repulsion, the proposed method
avoided local minima during the search process, whereas the DGHPSOGS and ARPSO
algorithms had some small periods of fitness stagnation during the search process.

4.1.3 Higher dimensional test functions

SAPSO algorithm had better performance when only the global best position was
evaluated as the most important measure, followed by the GPSO algorithm, as seen in the
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Figure 15 – Mean best solution versus iteration number using four PSOs: (a) Rosenbrock
10 dimensions; (b) Rosenbrock 20 dimensions; (c) Rosenbrock 30 dimensions.

0 1000 2000 3000 4000 5000

Iteration number

-15

-10

-5

0

5

L
o

g
1

0
(F

)

Rosenbrock (F2) | DIM = 10

SAPSO

DGHPSOGS

GPSO

ARPSO

(a)

0 1000 2000 3000 4000 5000

Iteration number

-10

-8

-6

-4

-2

0

2

4

6

L
o

g
1

0
(F

)

Rosenbrock (F2) | DIM = 20

SAPSO

DGHPSOGS

GPSO

ARPSO

(b)

0 1000 2000 3000 4000 5000

Iteration number

-10

-8

-6

-4

-2

0

2

4

6

L
o

g
1

0
(F

)

Rosenbrock (F2) | DIM = 30

SAPSO

DGHPSOGS

GPSO

ARPSO

(c)
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Table 5. With this in mind, the following experiments are executed in both algorithms
only. The main goal of this experiment is to evaluate the robustness of the algorithms with
even more difficult problems. One simple way to make the test functions more difficult is
to elevate the number of dimensions.

Table 6 compares the average performances of SAPSO and GPSO only in multi-
modal test functions with even higher dimensions, from 60 to 150. The results show that
SAPSO algorithm can maintain better approximations to the global minimum even in
higher dimensions of the search space, whereas GPSO algorithm seems to get trapped into
local minima of test functions, such as Rastrigin, Ackley, Alpine and Levi. The Griewank
function has some different properties when is evaluated at higher dimensions. The work
(LOCATELLI, 2003) presents a discussion about how this function behaves in higher
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Figure 16 – Mean best solution versus iteration number using four PSOs: (a) Levi 10
dimensions; (b) Levi 20 dimensions; (c) Levi 30 dimensions.
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Source: produced by the author.

dimensions. The author states that the function has a very large number of local minima,
exponentially increasing with the number of dimensions. The fast increasing number of
local minima suggests that the global minimum becomes extremely difficult to detect as
dimension increases. Counter-intuitively, a consistent mathematical proof is given by the
authors to prove the opposite, i.e., it becomes extremely easy to detect the global minimum
when large number of dimensions is evaluated. When the dimension increases, the product
of such cosine values becomes very small. Thus, the Griewank function, despite multiple
local minima, behaves similar to a quadratic convex function. As presented in Table 6, the
SAPSO algorithm ended up with near global minimum of the Griewank function which
can be considered feasible in some engineering applications. As the GPSO algorithm uses a
quasi Newton-Raphson method in the global best position at each iteration, the algorithm
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Table 6 – Mean best solution found in 20 runs.

Function d GPSO SAPSO

Griewank

60 0 0.0065
80 0 0.0205
100 0 0.016
120 0 0.0532
150 0 0.0287

Rastrigin

60 128.0997 0
80 269.3824 0
100 236.1511 0
120 269.1834 0
150 349.3266 0

Ackley

60 1 0
80 0 0
100 1.0225 0
120 0 0
150 0 0

Alpine

60 11.4362 9.3852
80 57.1410 23.3477
100 56.4144 54.6302
120 106.6680 63.0015
150 175.7591 106.2794

Levi

60 37.7036 1.6057
80 54.7733 3.0499
100 58.0076 4.2114
120 62.9311 5.8631
150 101.4227 8.1463

Source: produced by the author.

consequently finds the exact global minimum.

SAPSO algorithm reached exact results by finding the global minimum of the
Rastrigin function for all dimensional settings. Although this function is a fairly difficult
problem due to the large number of local minima, the mechanism of attraction and repulsion
along with gradient information led the SAPSO algorithm to the global minimum position.
On the other hand, the GPSO algorithm finished with poor results on Rastrigin function,
mainly due to the lack of mechanism of attraction and repulsion, which is very difficult to
escape from local minima and to properly explore the search space.

Although the Ackley function is highly multimodal, the SAPSO algorithm reaches
the global minimum in all dimensional settings. The same principles to face the Rastrigin
function is applied to face Ackley function. These types of multimodal functions must be
faced with gradient information to improve the exploitation of valleys and other mechanism
of attraction and repulsion the particles of the swarm, preventing the premature convergence
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and avoiding computational efforts to lose many iterations by investigating the same area
of the search space. On the other hand, the GPSO algorithm found the exact global
minimum when the number of dimensions in the test function is set as 80, 120 and 150
but also found some difficulties when is set as 60 and 100, which is justifiable by some
individual executions where the final result (the global best particle’s fitness) is far from
the true global minimum value.

The Alpine and Levi functions are highly multimodal and the global minimum
is not centralized in the search space domain. As the particles are initialize randomly
in the search space using a uniform distribution function, these types of functions bring
new challenges to the algorithm, reducing the probability of an algorithm find the global
minimum merely by luck. The PSO algorithms need to cleverly look for the global minimum
and avoid all the local minima during the search space. As can be seen on Table 6, as the
dimensions of Alpine and Levi functions increase, the level of difficulty in finding the exact
global minimum becomes more challenging. The results of SAPSO algorithm are nearer
the global minimum values than the ones obtained by the GPSO algorithm. As an overall
analysis, the GPSO algorithm gathered poor results when the number of dimensions is
higher than the default dimensional settings with 10, 20, 30. The most likely reason is
that GPSO algorithm could not avoid local minima during the search process.

4.1.4 Computational time analysis and algorithm reliability

This section presents the computational time of each PSO algorithm and provides
a discussion about the reliability of the proposed SAPSO algorithm. The results shown in
the Table 7 are based on the average CPU time, regarding 20 runs of each algorithm in
each test function configured for the dimensions 10, 20, and 30 (except for bi-dimensional
functions). The table also presents the successful ratio and the average number of iterations
required to reach a feasible solution in each test function. For this experiment, a feasible
result is considered an error lower than 10−10 distant from the exact global minimum.

The proposed approach generally offers the highest reliability averaged over all
functions, reaching feasible solutions with a successful ratio of 100% on all functions, except
on Alpine and Levi functions. In higher dimensions such as 20 and 30 dimensions, the test
functions are difficult to optimize, i.e., find the exact global minimum in the search domain
of continuous variable is quite challenging. Note that, for instance, the 30 dimension Levi
function, none of the approaches reached the stop criterion, but the SAPSO algorithm
approximated the global minimum as could be seen in the previous Table 5.
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Table 7 – Convergence speed based on average CPU time, ratio of success and average
number of iterations required to converge in 20 runs.

Function d Criterion ARPSO GPSO DGHPSOGS SAPSO

Sphere

10
Time (sec)
Ratio (%)
Iter.

2.546
100
1095.15

0.0408
100
14.2

0.6652
100
94

3.1772
100
462.8

20
Time (sec)
Ratio (%)
Iter.

4.2586
95
1797.05

0.0594
100
20.85

3.3571
100
314.8

6.7399
100
639

30
Time (sec)
Ratio (%)
Iter.

5.3245
95
2213.15

0.0785
100
23.9

12.7193
95
896.05

10.0624
100
711.4

Rosenbrock

10
Time (sec)
Ratio (%)
Iter.

12.7722
0
5000

22.5368
0
5000

46.991
0
5000

4.2591
100
428

20
Time (sec)
Ratio (%)
Iter.

13.1014
0
5000

34.4589
0
5000

77.6425
0
5000

12.8736
100
815.8

30
Time (sec)
Ratio (%)
Iter.

13.2463
0
5000

41.5576
0
5000

107.101
0
5000

39.1361
100
1802.8

Rastrigin

10
Time (sec)
Ratio (%)
Iter.

3.4878
100
1504.45

1.3758
95
314.1

5.8281
95
806.3

1.2901
100
178.6

20
Time (sec)
Ratio (%)
Iter.

6.2266
85
2618.95

16.5211
40
3054.05

33.7384
55
2972.95

3.5005
100
309

30
Time (sec)
Ratio (%)
Iter.

8.2892
65
3456.9

24.0261
30
3561.75

70.293
20
4554.9

5.2761
100
332.2

Griewank

10
Time (sec)
Ratio (%)
Iter.

2.9632
100
1169.95

0.106
100
21.6

0.6406
100
68.55

0.54917
100
59.2

20
Time (sec)
Ratio (%)
Iter.

4.421
100
1692.6

0.0869
100
20.1

8.6836
95
575.2

4.3347
100
285.8

Continued on next page
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Function d Criterion ARPSO GPSO DGHPSOGS SAPSO

30
Time (sec)
Ratio (%)
Iter.

5.479
90
2076.65

0.0562
100
12.65

36.9124
70
1770.55

35.474
100
1755.6

Ackley

10
Time (sec)
Ratio (%)
Iter.

2.249
100
944.5

0.1703
100
34.85

0.9022
100
112.55

0.3053
100
37.4

20
Time (sec)
Ratio (%)
Iter.

2.8142
100
1150.95

0.3983
100
58.55

13.4706
100
1058.9

8.1253
100
633.6

30
Time (sec)
Ratio (%)
Iter.

3.8729
100
1565.2

1.575
100
195.5

28.4259
80
1624.35

17.6396
100
1013.6

Ellipsoid

10
Time (sec)
Ratio (%)
Iter.

2.5814
100
1069.4

0.0556
100
18.85

0.9925
100
123.2

1.2563
100
156.2

20
Time (sec)
Ratio (%)
Iter.

5.7766
85
2338.45

0.0905
100
24.9

35.8376
55
2804.25

2.2636
100
179

30
Time (sec)
Ratio (%)
Iter.

6.1336
80
2396.85

0.1177
100
26.1

47.3343
55
2777.15

3.0102
100
175.2

Schaffer N.2 2
Time (sec)
Ratio (%)
Iter.

0.1988
100
89.2

0.0192
100
5.9

0.0348
100
9.2

0.0181
100
4.8

Alpine

10
Time (sec)
Ratio (%)
Iter.

1.6122
100
693.65

7.5985
90
512.9

1.5072
100
212

0.0517
100
6.6

20
Time (sec)
Ratio (%)
Iter.

8.657
40
3584.3

31.6253
45
2275.5

18.6761
85
1675.9

23.2632
85
2082.4

30
Time (sec)
Ratio (%)
Iter.

10.9362
15
4484.15

54.4005
40
3400.85

46.1025
50
3019.75

53.5494
80
3488

Levi

10
Time (sec)
Ratio (%)
Iter.

11.1767
40
4637.6

13.2952
0
5000

24.0394
90
3038.75

18.6952
100
2189.8

Continued on next page
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Function d Criterion ARPSO GPSO DGHPSOGS SAPSO

20
Time (sec)
Ratio (%)
Iter.

12.4584
0
5000

18.7378
0
5000

64.1383
10
4961.1

62.2445
40
4542

30
Time (sec)
Ratio (%)
Iter.

12.6167
0
5000

27.6092
0
5000

89.8164
0
5000

89.9835
0
5000

Levi N.13 2
Time (sec)
Ratio (%)
Iter.

0.3927
100
132.95

6.9263
25
3785.25

3.2726
100
896.45

0.3394
100
95.15

Source: produced by the author.

According to the “no free lunch theorem” (WOLPERT; MACREADY, 1997), one
algorithm maintains an average performance on every aspect close to any other when
considering a large number of test functions. In other words, an algorithm can not offer
better performance on all kind of problems. The above phenomenon is also observed in this
experiment. As presented in the summarized Table 8, regarding the average CPU time for
each number of dimension, one can see that the SAPSO algorithm is the fastest approach
up to dimension 10. Although the proposed approach is not the fastest approach among
the PSO algorithms regarding the higher dimensions (but it is not the worst either). In
this case, note that the gradient-based approaches take much time on higher dimensions
mainly due to the time required to calculate the partial derivatives. Indeed, this influences
the time required to run the algorithm and is also observed in the DGHPSOGS algorithm,
being the worst one in terms of computational time. The ARPSO algorithm outperformed
GPSO, DGHPSOGS and SAPSO algorithms on dimensions 20 and 30. However, ARPSO
is one of the worst algorithm when applied to problems to find the global minimum, as
previously discussed in Table 5.

Table 8 – Average CPU time (in seconds) for each number of dimensions.

d ARPSO GPSO DGHPSOGS SAPSO

2 0.2957 3.4728 1.6537 0.1787
10 4.9236 5.64734 10.1958 3.698
20 7.2145 12.7473 31.9430 15.4181
30 8.2373 18.6776 54.838 31.7664

Source: produced by the author.
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Other information extracted from Table 7 is the one presented in Table 9, which
shows that the SAPSO algorithm outperformed the other PSOs regarding the average
number of iterations required to converge to a feasible solution. The ARPSO algorithm
is better than GPSO and DGHPSOGS on 2 dimensional problems. The DGHPSOGS
algorithm outperformed GPSO and ARPSO algorithms on 10 dimensional problems,
while GPSO algorithm is better than DGHPSOGS and ARPSO algorithms on 20 and 30
dimensional problems.

Table 9 – Average number of iterations required to converge to a feasible solution.

d ARPSO GPSO DGHPSOGS SAPSO

2 111.075 1895.575 452.825 49.975
10 2014.3375 1364.5625 1181.9187 439.825
20 2897.7875 1931.7437 2420.3875 1185.825
30 3274.1125 2152.5937 3080.3437 1784.85

Source: produced by the author.

As can be seen from the above experiments, the SAPSO algorithm guarantees the
global minimum (or at least near the global minimum) in all test functions. The gradient-
based information is crucial and assists the algorithm in the search process, although it
takes time to calculate the partial derivatives in higher dimensional problems. However, the
total number of iterations required to find the global minimum was significantly decreased,
which might be an indicative that the semi-autonomous particles are investigating the
search space in a parsimonious fashion.

4.1.5 Diversity control analysis

The following experiment is conducted on the test functions with ten dimensions
(without loss of generality for higher dimensions). The attractive and repulsive schemes,
as represented by SAPSO, ARPSO, and DGHPSOGS, are shown in the Figure 17. This
figure shows the diversity values of the swarm in the PSOs for six test functions. Each
repulsion phase is a chance of escaping from a local minimum, as the test functions are
highly multimodal with many local minima through the search space, this becomes an
important feature incorporated in the proposed algorithm.

The SAPSO and ARPSO algorithms keep the diversity of the swarm adaptively in
the whole search process. However, ARPSO loses its diversity faster than SAPSO after
a repulsion phase. This effect is stronger in Figures 17b and 17e, but it is also noted
in all test functions. It is worth noting that after a repulsion phase, SAPSO algorithm
applies the state {10} (Figure 8), which means the particles are in the attraction phase
and they are autonomous to evaluate their own area in the search space through negative
gradient direction. Note that, this state leads to a slow decreasing of diversity value along
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Figure 17 – The diversity values of four PSOs on five test functions: (a) Sphere; (b)
Rosenbrock; (c) Rastrigin; (d) Griewank; (e) Ackley; (f) Levi.
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the iterations and brings a stronger capability of exploiting different areas of the search
space simultaneously and properly, which in turns also minimizes the number of iterations
to investigate a valley and reduces the effect of random walk (due to the deterministic
directions of gradients).

The DGHPSOGS algorithm applies the repulsion phase for a short period of time,
thus the particle is not far enough apart to jump out from one local minimum to another
when compared to the proposed SAPSO algorithm. Note that, the DGHPSOGS algorithm
defines the lower bound only (review Section 2.9.3), i.e., attraction and repulsion phases
are controlled by only one threshold. This mechanism leads the algorithm to a faster
switching between phases of attraction and repulsion during the search process. This
behavior can be seen in all test functions. On the other hand, the GPSO algorithm has
no diversity control at all. One can note that there is no decrease of the diversity value
along the iterations in the GPSO algorithm in all test functions. The GPSO algorithm is a
pure classical PSO running under the hood with a quasi Newton-Raphson method applied
over the global best position only. In other words, each particle has the contradictory and
probabilistic decision to follow between the cognitive and social directions at the same
time in each iteration.

This model of algorithm is excellent in unimodal functions such as Sphere and
Rosenbrock, due to the deterministic method applied at each iteration. However, for
multimodal functions, a prominent result depends of a probabilistic combination of steps
for at least one particle be in the correct valley, e.g., a valley where the global minimum
is, and to properly exploit this region in such manner that the global best position turns
into its own position. In this particular case, the GPSO algorithm will take that global
best position and lead it to a fast convergence to the minimum and the particles of the
swarm will not have enough iterations to converge to a cluster.

The experiment presented in Table 10 relates the average of number of times
a repulsion phase occurs and the average number of iterations required to achieve the
global minimum is provided. The experiment confirms that SAPSO algorithm applies
less repulsion phases and still find the global minimum with less iterations. Besides, no
PSO algorithms found the exact global minimum in Rosenbrock and Levi functions. Thus,
the maximum number of iterations (5000) was used as a stop criterion. The SAPSO
algorithm used the stop criterion in Levi N.13 function, but less repulsion phases were
applied. However, the SAPSO algorithm still found better results with less repulsion phases
(Table 5) on Rosenbrock and Levi N.13 functions. This fact indicates an appropriate trade-
off of exploration and exploitation and suggests a better use of the attraction and repulsion
schemes.

The ARPSO algorithm always required more iterations to reach the global minimum,
followed by the DGHPSOGS algorithm on all test function, except for the Levi N.13
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Table 10 – Average number of repulsions and stop criteria match by three PSOs on ten
test functions.

Function ARPSO DGHPSOGS SAPSO
repulsion iteration repulsion iteration repulsion iteration

Sphere 1.3 930.15 0 121.5 3 776.8
Rosenbrock 14.05 5000 12.45 5000 3 5000
Rastrigin 2.95 1413.7 1 499.8 0.55 179.05
Griewank 1.5 854.6 0 85.65 0.05 41.25
Ackley 1.75 911.85 0 83.95 0 28.85
Ellipsoid 4.95 1355.8 3.15 661.25 2.55 174.25
Schaffer N.2 0 181.55 0 13.45 0.1 12.9
Alpine 4.9500 1566.1 3.2500 766.7 2.8 19.75
Levi 25.35 5000 30.05 5000 63.15 5000
Levi N.13 0.65 392.45 0.15 1403.5 0.1 5000

Source: produced by the author.

function. Despite this fact, the number of repulsion phases required by the DGHPSOGS
algorithm was smaller than the one required by ARPSO algorithm in all cases (except
on the Levi function). Figure 17 brought this idea by presenting a slow decrease of the
diversity value of the DGHPSOGS algorithm along the iterations. For instance, this
behavior contributes to better exploit the search space of the Sphere function, since the
gradient information is also used by the DGHPSOGS algorithm.

4.2 Results: rotation and information exchange
This section outlines the methodology of the experiments following the rules stated

by Clerc (Section 2.10). The test functions described in this work are based on CEC 2017
benchmark problems in which single objective real-parameter numerical optimization is
under consideration. All optimization functions are randomly shifted and rotated. As there
are seldom any relation among variables in real-world optimization problems, the rotate
matrices are divided into subcomponents randomly and each subcomponents are gener-
ated from standard normally distributed entries by Gram-Schmidt ortho-normalization
(CHENEY; KINCAID, 2008).

In the above context, the author cover Clerc’s rule 1, as the global optimum of any
test function is not in the center, axis or diagonal of the problem space. Rule 2 is devoted
to the estimated performance whose convergence is reliable. In Section 3.2.3, an empirical
test to define a reasonable value for E (number of experiments) was described. Rule 3a and
3b are covered by two performance criterion: error and success rates. The computational
time is also carried out for each PSO version. Additionally, two non-parametric statistical
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hypothesis tests are performed to strengthen the analyses of results. Rule 4 and 5 were
previously discussed in Section 2.10.

As far as the author know, no other author has investigated this topic. Herein, this
thesis evaluates the influence of the late and fast exchange of information among particles
in both rotationally variant and invariant versions of PSO, named according to Table 11.

Table 11 – Notation of each algorithm under evaluation. The under-script stands for the
rotational version, while the superscript indicates the type of information
exchange.

Algorithm Notation Description

1 Ψlate
var

Rotational variant and
late information exchange

2 Ψfast
var

Rotational variant and
fast information exchange

3 Ψlate
inv

Rotational invariant and
late information exchange

4 Ψfast
inv

Rotational invariant and
fast information exchange

Source: produced by the author.

In order to make the results as reliable as possible, important rules pointed by
Maurice Clerc (CLERC, 2012a) will be followed up, which implies among other complex
test functions, statistical tests and law of large numbers. The following sections provide
many details about the experiments of this work: Section 4.2.1 presents the optimization
problems and their characteristics; Section 4.2.2 reports the simulation results found by
the experimental tests; Section 4.2.3 describes and shows the statistical hypothesis tests.

4.2.1 CEC 2017 benchmark problems

The next experimental tests are based on ten optimization problems, including
shifted, rotated and composition test functions. Before describe them, Table 12 defines
the basic form of all test functions. As the composition functions are formed by more than
one function, the total of basic functions is thirteen.

Each test function offers different challenges for any optimization algorithm, such
as: many local minima surrounding the global minimum, nearly flat regions, d-dimensional
continuous space for searching, and decentralized global minimum. The functions are used
to assert the qualities of each PSO version under evaluation, particularly on multimodal
functions where the algorithms must be able to avoid local minima and fine-tune the
global optimum. As the functions are shifted, rotated, and composed, Table 13 describes
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Table 12 – Basic test functions from CEC 2017 benchmark suite.

Function Equation Mode

Bent Cigar (b1) x2
1 + 106 d∑

i=2
x2
i unimodal

Zakharov (b2)
d∑
i=1

x2
i +

(
d∑
i=1

0.5xi
)2

+
(

d∑
i=1

0.5xi
)4

unimodal

Rosenbrock (b3)
d−1∑
i=1

100
(
x2
i − xi+1

)2
+
(
xi − 1

)2
multimodal

Rastrigin (b4)
d∑
i=1

(
x2
i − 10 cos

(
2πxi

)
+ 10

)
multimodal

Levy (b5)
sin2

(
πz1

)
+

d−1∑
i=1

(
zi − 1

)2
(

1 + 10 sin2
(
πzi + 1

))
+
(
zd − 1

)2
(

1 + sin2
(
2πzd

))
where zi = 1 + xi−1

4 ,∀ i ∈ {1, 2, . . . , d}
multimodal

Modified Schwefel (b6)

418.9829d−
d∑
i=1

g(zi)
where zi = xi + 4.2096874622750361E+002,

g(zi)


zi sin

(
|zi|1/2

)
if |zi| ≤ 500(

500− mod
(
zi, 500

))
sin

(√
|500− mod

(
zi, 500

)
|
)
− (zi−500)2

10000d if zi > 500(
mod

(
|zi|, 500

)
− 500

)
sin

(√
| mod

(
|zi|, 500

)
− 500|

)
− (zi+500)2

10000d if zi < −500

multimodal

Happycat (b7)
∣∣∣∣ d∑
i=1

x2
i − d

∣∣∣∣1/4
+
(

0.5
d∑
i=1

x2
i +

d∑
i=1

xi

)
/d+ 0.5 multimodal

Ackley (b8) −20 exp
(
− 0.2

√
1
d

d∑
i=1

x2
i

)
− exp

(
1
d

d∑
i=1

cos
(
2πxi

))
+ 20 + exp (1) multimodal

Discus (b9) 106x2
1 +

d∑
i=2

x2
i unimodal

Expanded Schaffer’s F6 (b10)

d−1∑
i=1

g(xi, xi+1) + g(xd, x1)

g(x, y) = 0.5 +

(
sin2(
√
x2+y2)−0.5

)
(

1+0.001(x2+y2)
)2

multimodal

Griewank (b11) 1 + 1
4000

d∑
i=1

x2
i −

d∏
i=1

cos
(
xi√
i

)
multimodal

HGBat (b12)
∣∣∣∣( d∑

i=1
x2
i

)2
−
( d∑
i=1

xi
)2
∣∣∣∣1/2

+
(
0.5

d∑
i=1

x2
i +

d∑
i=1

xi
)
/d+ 0.5 unimodal

High Conditioned Elliptic (b13)
d∑
i=1

(106)
i−1
d−1x2

i multimodal

Source: produced by the author.

the transformations required to achieve such modifications with their respectively global
minimum values defined as F ∗k .

Note that, the basic functions used to form the composition functions fk∈{7,...,10}

are shifted and rotated. The following points describe the meaning of variables, matrices,
and auxiliary functions:

• fk∈{7,...,10}: composition functions;

• Mi∈{1,...,13}: rotation matrix. Different rotation matrix are used for each basic function;

• ~oi∈{1,...,13}: shifted optimum position in which oij ∼ U(−80, 80);

• −100 ≤ xj∈{1,...,d} ≤ 100: search range for all test functions;

• N : number of basic functions;

• gi∈{1,...,N}: ith basic function used to construct the composition function;

• biasi∈{1,...,N}: defines which optimum is the global optimum;
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Table 13 – Shifted, rotated, and composition test function.

Function Equation F ∗k = fk(~xopt)
Bent Cigar (f1) b1(M1(~x− ~o1)) + F ∗1 100
Zakharov (f2) b2(M2(~x− ~o2)) + F ∗2 300
Rosenbrock (f3) b3(M3(2.048(~x−~o3)

100 ) + 1) + F ∗3 400
Rastrigin (f4) b4(M4(~x− ~o4)) + F ∗4 500
Levy (f5) b5(M5(5.12(~x−~o5)

100 )) + F ∗5 900
Schwefel (f6) b6(M6(1000(~x−~o6)

100 )) + F ∗6 1000

Composition (f7)

N∑
i=1

ωi[λigi(~x) + biasi] + F ∗7

where N = 5,
σ = [10, 20, 30, 40, 50],
λ = [10, 1, 10, 1E−6, 1],
bias = [0, 100, 200, 300, 400],
g = [b4, b7, b8, b9, b3]

2500

Composition (f8)

N∑
i=1

ωi[λigi(~x) + biasi] + F ∗8

where N = 5,
σ = [10, 20, 20, 30, 40],
λ = [1E−26, 10, 1E−6, 10, 5E−4],
bias = [0, 100, 200, 300, 400],
g = [b10, b6, b11, b3, b4]

2600

Composition (f9)

N∑
i=1

ωi[λigi(~x) + biasi] + F ∗9

where N = 6,
σ = [10, 20, 30, 40, 50, 60],
λ = [10, 10, 2.5, 1E−26, 1E−6, 5E−4],
bias = [0, 100, 200, 300, 400, 500],
g = [b12, b4, b6, b1, b13, b10]

2700

Composition (f10)

N∑
i=1

ωi[λigi(~x) + biasi] + F ∗10

where N = 6,
σ = [10, 20, 30, 40, 50, 60],
λ = [10, 10, 1E−6, 1, 1, 5E−4],
bias = [0, 100, 200, 300, 400, 500],
g = [b8, b11, b9, b3, b7, b10]

2800

Source: produced by the author.

• σi∈{1,...,N}: controls each gi’s coverage range;

• λi∈{1,...,N}: controls each gi’s height;
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• wi∈{1,...,N}: weight value for each gi defined as:

wi = 1√
d∑
j=1

(xj − oij)2
exp

(
−

d∑
j=1

(xj − oij)2

2dσ2
i

)
. (4.1)

• ωi∈{1,...,N} is the normalized version of wi defined as:

ωi = wi
N∑
i=1

wi

. (4.2)

In the composition functions, when ~x = ~oi, then:

ωj =

1 j = i

0 j 6= i
∀ i, j ∈ {1, 2, . . . , N}. (4.3)

An adjustment in the form of Fi = Fi − F ∗i is applied on each basic function
represented by gi to produce global optimum values equal to zero. Finally, the global
optimum value of the composition function is defined as the smallest bias value according
to

fk∈{7,...,10}(~xopt) = biasi + F ∗k . (4.4)

A bi-dimensional representation of each function is depicted in Figure 18. In
this thesis, the experiments are conducted on functions defined with 2, 10, 30, and 50
dimensions.

4.2.2 Toward the minimum error rate

This section describes and presents the simulations conducted by this experi-
ments. The parameter settings of the algorithms are inspired by the works (EBERHART;
KENNEDY, 1995; KENNEDY; EBERHART, 1995; SHI; EBERHART, 1998a) and sum-
marized in Table 14. The cognitive and social coefficients are both set as 2, which provide
an acceptable trade-off between exploration and exploitation, as the expected value of
random factors (either φ or ~φ) is 1 in all dimensions, providing the same influence of the
coefficients over the particles. The chosen bound handling mechanism for all PSO versions
is Nearest.

The inertia weight is ruled by a linear decreasing function over the generations
varying from 0.9 to 0.4 in which is based on (SHI; EBERHART, 1999; RATNAWEERA;
HALGAMUGE; WATSON, 2004). The maximum number of iterations is empirically set
as 5000 for each execution. The number of execution is 134, as previously discovered
in Section 3.2.3. Note that, each particle evaluates the test function only one time per
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Figure 18 – Bi-dimensional surface of shifted, rotated and composition test functions of
CEC 2017 benchmark suite.
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Source: produced by the author.

iteration, as a mandatory step right after the particle movement. Thus, the maximum
number of function evaluations is 100,000 (the conversion from generation to function
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Table 14 – Parameter settings for all versions of PSO.

Variable Value

Number of particles (n) 20
Number of dimensions (d) [2, 10, 30, 50]
Cognitive coefficient (c1) 2
Social coefficient (c2) 2
Inertia weight (w) [.9 → .4]

Number of Iterations (T ) 5000
Number of executions (E) 134

Source: produced by the author.

evaluations is straightforward: n× T = 20× 5000).

The PSO algorithms stop in two conditions: 1) the error rate is below a predefined
threshold ξ, which is estimated by the difference of the function values between global
memory position and the known global minimum position, i.e., f(~x)−f(~xopt) ≤ ξ; otherwise
the algorithms stop when 2) the maximum number of iterations is reached.

Throughout this section, a collection of performance criteria is used to evaluate
the four versions of PSO. Since 134 executions are performed by each test function and in
each dimensional problem, the results are averaged over all executions. All experiments
are conducted regarding two error thresholds. Thus, a feasible result is considered if the
error is lower than ξ = 10−2 (first experiment) or ξ = 10−8 (second experiment). Table 15
exhibits the average error rate for all test functions. The best results are in bold and the
last row corresponds to a simple rank based on the winner count.

The test functions are difficult to optimize due to the shifted and rotated features.
The versions of PSO are very basic, without sophisticated mechanism to escape from local
optima or to properly investigate promising areas of the search space when necessary.
Therefore, one can expect that the lack of elaborated features might influence the results.
It is worth noting that complex functions are of interest, as the main goal of this work is
to distinguish the performance of PSO algorithms to some extent.

Another important information from Table 15 is the naive score for best results
(last row). This table announces the phenomenon previously discussed by Rule 3a in
which by considering late information exchange only, no such a winner is observed: for
ξ = 10−2, Ψlate

inv won, but when ξ = 10−8, Ψlate
var comes in first. The same phenomenon

occurred when fast exchange information takes place, which in turns recalls the “no free
lunch theorem”. The phenomenon is also observed in this experiment, as one can clearly
verify that there is no such PSO algorithm with the best performance among all test
functions. Even Ψfast

var , which is the overall winner considering the rank, is not the best
algorithm in all optimization problems. Later in Section 4.2.3, two statistical hypothesis
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Table 15 – Average error rate obtained in the benchmark functions.

fi d
ξ = 10−2 ξ = 10−8

Ψlate
var Ψlate

inv Ψfast
var Ψfast

inv Ψlate
var Ψlate

inv Ψfast
var Ψfast

inv

f1

2 1.0363 · 103 1.2301 · 103 1.8421 · 103 1.9066 · 103 1.3004 · 103 1.4360 · 103 1.6006 · 103 1.7355 · 103

10 9.9705 · 108 9.0757 · 108 9.1413 · 108 6.7557 · 108 9.3920 · 108 1.0377 · 109 8.2309 · 108 9.1577 · 108

30 1.3576 · 1010 1.2518 · 1010 8.7001 · 109 9.5002 · 109 1.4714 · 1010 1.3262 · 1010 9.6544 · 109 9.2122 · 109

50 4.5745 · 1010 4.5875 · 1010 3.4734 · 1010 3.4994 · 1010 4.4318 · 1010 4.5726 · 1010 3.2378 · 1010 3.2439 · 1010

f2

2 5.1064 · 10−3 5.3003 · 10−3 5.3628 · 10−3 4.8076 · 10-3 5.3254 · 10−9 5.6937 · 10−9 5.1425 · 10-9 2.7636 · 10
10 2.4761 · 103 4.4130 · 103 3.9344 · 103 3.4471 · 103 5.4495 · 103 4.1209 · 103 3.6723 · 103 4.0285 · 103

30 8.0586 · 104 8.3407 · 104 7.9083 · 104 8.1820 · 104 7.9541 · 104 8.8074 · 104 7.7209 · 104 8.5724 · 104

50 2.3550 · 105 2.4895 · 105 2.4622 · 105 2.3953 · 105 2.5081 · 105 2.4484 · 105 2.2991 · 105 2.4180 · 105

f3

2 5.5015 · 10−3 5.0065 · 10−3 5.1903 · 10−3 4.8448 · 10-3 5.7551 · 10−9 5.9471 · 10−9 5.3904 · 10−9 5.2361 · 10-9

10 5.8704 · 10 4.4042 · 10 4.5266 · 10 4.6580 · 10 5.9293 · 10 5.6364 · 10 4.4452 · 10 5.5527 · 10
30 1.7617 · 103 1.7809 · 103 1.2648 · 103 1.3462 · 103 1.6366 · 103 1.7029 · 103 1.2119 · 103 1.1979 · 103

50 6.2898 · 103 6.2036 · 103 4.6742 · 103 5.1340 · 103 6.3718 · 103 6.9435 · 103 4.3288 · 103 4.8315 · 103

f4

2 5.3972 · 10−3 4.9741 · 10−3 4.7022 · 10-3 4.7392 · 10−3 4.9369 · 10−9 5.1772 · 10−9 4.7552 · 10-9 5.2896 · 10−9

10 2.3572 · 10 2.5527 · 10 2.3868 · 10 2.5115 · 10 2.3358 · 10 2.4424 · 10 2.2510 · 10 2.4346 · 10
30 1.6178 · 102 1.6078 · 102 1.4807 · 102 1.4639 · 102 1.5411 · 102 1.5730 · 102 1.4007 · 102 1.4494 · 102

50 3.5366 · 102 3.5093 · 102 3.2735 · 102 3.1740 · 102 3.4570 · 102 3.4570 · 102 3.2113 · 102 3.2357 · 102

f5

2 4.9470 · 10−3 4.7122 · 10-3 4.8215 · 10−3 4.7864 · 10−3 5.4638 · 10−9 5.5404 · 10−9 5.3639 · 10-9 5.7088 · 10−9

10 8.0214 1.9830 · 10 4.8735 3.4676 3.2687 · 10 2.0876 · 10 4.7420 4.5227
30 3.6308 · 103 3.6055 · 103 3.5140 · 103 2.9748 · 103 3.7778 · 103 3.8003 · 103 3.2551 · 103 3.2827 · 103

50 1.6757 · 104 1.7278 · 104 1.4677 · 104 1.5941 · 104 1.7939 · 104 1.6342 · 104 1.5444 · 104 1.6145 · 104

f6

2 3.4745 7.1749 7.0379 6.5470 6.2300 4.3138 3.8801 7.9505
10 6.3182 · 102 6.5214 · 102 6.7792 · 102 6.3601 · 102 6.7361 · 102 6.3172 · 102 6.1219 · 102 6.5672 · 102

30 4.0033 · 103 4.0564 · 103 4.0807 · 103 3.9996 · 103 4.0307 · 103 4.1664 · 103 4.1189 · 103 4.0385 · 103

50 7.9329 · 103 7.7368 · 103 7.8001 · 103 7.6545 · 103 7.7064 · 103 7.6689 · 103 7.7400 · 103 7.5421 · 103

f7

2 1.5002 · 10 1.2829 · 10 9.7081 1.5364 · 10 1.9088 · 10 1.3433 · 10 1.3433 · 10 1.4179 · 10
10 4.6514 · 102 4.5811 · 102 4.5345 · 102 4.5535 · 102 4.6972 · 102 4.6074 · 102 4.5362 · 102 4.5366 · 102

30 7.6633 · 102 7.4949 · 102 6.1469 · 102 6.2024 · 102 7.5143 · 102 7.9727 · 102 6.0544 · 102 6.0299 · 102

50 3.3030 · 103 3.3085 · 103 2.1421 · 103 2.4317 · 103 3.5435 · 103 3.1147 · 103 2.2097 · 103 2.1182 · 103

f8

2 6.7228 · 10−3 6.8841 · 10−3 6.9635 · 10−3 6.6855 · 10-3 6.8283 · 10-9 6.9065 · 10−9 7.1369 · 10−9 6.8762 · 10−9

10 6.9794 · 102 6.3698 · 102 6.7221 · 102 5.7071 · 102 6.9387 · 102 6.2725 · 102 6.0537 · 102 6.2433e · 102

30 4.1126 · 103 4.2228 · 103 3.8694 · 103 3.7022 · 103 4.1369 · 103 4.1482 · 103 3.9654 · 103 3.8485 · 103

50 9.4762 · 103 9.0946 · 103 8.2951 · 103 8.4071 · 103 8.9468 · 103 9.7969 · 103 8.6902 · 103 8.3908 · 103

f9

2 7.6738 · 10-3 7.8089 · 10−3 8.1611 · 10−3 7.7787 · 10−3 4.6515 · 10−4 4.8005 · 10−4 4.3372 · 10-4 4.3513 · 10−4

10 4.2670 · 102 4.2401 · 102 4.2950 · 102 4.3589 · 102 4.2895 · 102 4.3265 · 102 4.2778 · 102 4.2330 · 102

30 6.7292 · 102 6.7904 · 102 7.1205 · 102 7.3174 · 102 6.9059 · 102 6.8905 · 102 7.2329 · 102 7.1081 · 102

50 1.4703 · 103 1.4628 · 103 1.5537 · 103 1.6018 · 103 1.4518 · 103 1.4977 · 103 1.6352 · 103 1.5499 · 103

f10

2 5.2008 · 10 4.9133 · 10 5.9181 · 10 6.0217 · 10 8.0638 · 10 7.0828 · 10 6.2908 · 10 5.5046 · 10
10 6.4561 · 102 6.3973 · 102 6.0526 · 102 6.1345 · 102 6.2053 · 102 6.4226 · 102 6.4227 · 102 6.3270 · 102

30 1.9026 · 103 1.7223 · 103 1.5295 · 103 1.2942 · 103 1.8724 · 103 1.9307 · 103 1.3993 · 103 1.4760 · 103

50 6.4178 · 103 5.9230 · 103 5.0535 · 103 5.1330 · 103 6.1592 · 103 6.1387 · 103 4.7873 · 103 5.1577 · 103

115 114 89 82 117 129 69 85

Source: produced by the author.

tests are conducted to distinguish the algorithms in terms of statistical significance.

To complement the above experiments, Table 16 summarizes the results with
the following averages: CPU time (in seconds), number of iterations required to stop
the algorithms, and success rate (in percentage). The values are all averaged based on
E = 134 and also represents the average of all functions. As can be seen, the lower the
dimension, the better the results. This point is clear when the test functions are set as
d = 2. As the number of dimensions increases, even a well-behaved test function becomes
complex to optimize. As a result, the success rate is approaching zero and the iteration
number required to stop the algorithm is maximum. The versions Ψlate are faster than
Ψfast in all cases. This is due to the method to exchange information among particles.
Ψlate algorithms updates the global best position after a whole iteration is completed, i.e.,
only one verification of the swarm must be done per iteration. Thus, the particles move
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Table 16 – Summary of performance criteria by grouping the results per dimension.

d Criterion ξ = 10−2 ξ = 10−8

Ψlate
var Ψlate

inv Ψfast
var Ψfast

inv Ψlate
var Ψlate

inv Ψfast
var Ψfast

inv

2
sr 87.2388 88.4328 85.1492 85.2985 70.8209 70.22388 70 70.2985
time 0.3274 0.3144 0.7605 0.7801 0.5492 0.5533 1.2488 1.2734
iter. 1444.4832 1405.51 1445.1289 1477.7687 2411.22 2420.38 2429.64 2413.51

10
sr 15.7463 15.8209 16.2687 15.9701 8.806 15.4478 15.8209 15.5224
time 1.1523 1.1534 2.612 2.6914 1.2713 1.2815 2.6576 2.7207
iter. 4609.85 4605.85 4593.57 4598.7 4699.4 4685.72 4675.23 4675.84

30
sr 0 0 0 0 0 0 0 0
time 1.8543 1.8542 3.643 3.717 1.951 1.9834 3.5915 3.6722
iter. 5000 5000 5000 5000 5000 5000 5000 5000

50
sr 0 0 0 0 0 0 0 0
time 2.8609 2.8505 4.6212 4.9515 3.1087 2.9029 4.5858 4.8319
iter. 5000 5000 5000 5000 5000 5000 5000 5000

Source: produced by the author.

through the search space simultaneously. On the other hand, due to the fast exchange of
information of Ψfast , a verification must be done after each particle’s movement, i.e., the
global best position can be updated multiple times at each iteration, which increases the
computational time of the algorithm.

Although some algorithm are better than others regarding the success rate and
number of iterations required to stop the algorithm, the winning algorithms are barely
consistent. For example, the success rate of 88.43% with Ψlate

inv is closely followed by 87.23%
with Ψlate

var in bi-dimensional problems with ξ = 10−2. However, Ψlate
var is better with 70.82%

when ξ = 10−8. In the 10-dimensional space, one can note that the best algorithm is Ψfast
var ,

independently of the error threshold predefined. The conclusions about the performance
of the algorithms are compromised when 30- and 50-dimensional problems are evaluated,
as the error thresholds were not reached. However, the authors decided to maintain these
results since the computational times indicate the fastest algorithms.

In relation to the number of iterations required to stop the algorithm, the values
follow the success rate, i.e., in 2-dimensional problems, Ψlate

inv required less iterations to
reach feasible solutions with ξ = 10−2, while Ψlate

var ended up with less iterations when
ξ = 10−8. When 10-dimensional problems are considered, the best algorithm is Ψfast

var in
both error rates. The algorithms tie in high dimensional test functions.

As presented in Tables 15 and 16, it is quite difficult to distinguish the best
algorithm, as some algorithm are better than others in some cases, but the same algorithm
performed poorly in other scenarios. Since one of the goals of this paper is to indicate
the best approach between Ψvar and Ψinv , considering the methods to update the global
memory, the next Section 4.2.3 provides a statistical hypothesis test based on the data
from Table 15.
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4.2.3 Friedman’s and Wilcoxon’s statistical tests with k × k and pair-wise
comparisons

In this section, two well-known statistical hypotheses tests are conducted to find an
indicative of the best PSO version based on the error rate described in Table 15: Friedman
(FRIEDMAN, 1937) and Wilcoxon signed ranks (ZAR, 2007). The experiments assume
the following null and alternative hypotheses in terms of algorithm results1:

• H0: both algorithms have no significant difference;

• H1: both algorithms have significant difference.

The first part of the statistical hypothesis analysis evaluates Friedman’s test and
post-hoc procedure to decide whether exist statistical significance among the performances
of the algorithm. Friedman’s test is used for multiple comparisons. In the context of this
thesis, multiple comparisons is related to each pair of possible comparison between two
algorithms (k × k) by considering four PSO versions (k = 4) and a family of different
hypotheses h = k(k−1)

2 . In the case of statistical significance among algorithms, a post-hoc
procedure is performed to find the p-values which determines the degree of rejection
of each hypothesis. Furthermore, the p-values are adjusted to consider the family error
accumulated (Family-Wise Error Rate – FWER), which is the probability of making one
or more false discoveries among all the hypotheses when performing multiple pairwise
tests.

The second part of the statistical hypothesis analysis investigates Wilcoxon’s test
to provide specific insights between two pairs of comparisons: 1) Ψvar versus Ψinv ; 2)
Ψlate versus Ψfast . The goal of the second statistical hypothesis test is to validate and
confirm the findings of Friedman’s test.

Friedman’s test is a non-parametric statistical hypothesis test used to detect
differences in the median values at least between two populations. In the context of
algorithms’ performance, Freedman test detects whether there are significance differences
between two or more algorithms (DERRAC et al., 2011). If the statistical significance holds
for at least two algorithms under consideration, a post-hoc procedure needs to be executed
to find the specific algorithms where the significance exists. To compute the Friedman
statistic, the original results from Table 15 must be converted through a ranking-based
transformation (HOLLANDER; WOLFE; CHICKEN, 2013). For each problem i, rank the
results of each algorithm j from 1 (best result) to k (worst result) as rij, 1 ≤ i ≤ m, and
1 ≤ j ≤ k. After that, the ranks of each algorithm has to be averaged: Rj = 1

m

∑m
i=1 rij.

1 Generic null and alternative hypotheses concern the type of statistical measure of population for
Friedman’s and Wilcoxon’s tests, respectively, median and mean.
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Finally, each average is used to compute the Friedman statistic

Ff = 12m
k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4

, (4.5)

where m stands for the number of problems and k is the number of algorithms. When
m > 10 and k > 4, Ff follows a χ2 distribution with k − 1 degrees of freedom. For a
smaller number of algorithms and problems, the critical values can be extracted from the
Friedman χ2

F distribution table (ZAR, 2007).

Before proceeding with the Friedman’s test, Table 17 describes the average ranks
of each PSO version obtained through the application of ranking-based transformation.
When ξ = 10−2, the results indicates the version Ψfast

inv as the best performing algorithm of
the comparison, although the other approaches are close to each other where the maximum
difference of average ranks is 0.825 (2.875 - 2.05). Thus, the sum of ranks are more
likely to be equal among the algorithms. Whilst the algorithm Ψfast

var is the best approach
when ξ = 10−8. However, the maximum difference of average ranks is 1.5 (3.225 - 1.725).
Therefore, there is a strong inclination for good performance for the algorithm Ψfast

var . In
general, until this simple analysis, the conclusion is that the fast information exchange
has an important role in the search process, but the rotational variance (or invariance)
property must be analysed more carefully, once a tie was found.

Table 17 – Average ranks achieved by the Friedman’s test using Table 15.

Algorithm ξ = 10−2 Order ξ = 10−8 Order
Ψlate
var 2.875 4 2.925 3

Ψlate
inv 2.850 3 3.225 4

Ψfast
var 2.225 2 1.725 1

Ψfast
inv 2.050 1 2.125 2

Source: produced by the author.

Table 18 highlights the Friedman statistics, p-values and critical value. The test
statistic is greater than the critical value for both error thresholds. Also, the p-value is
smaller than the chosen significance level (α = 0.05), which suggests there is at least one
significant difference among the algorithms under consideration.

After the whole multiple comparison analysis and the strong evidence of significant
difference among the algorithms’ performance, the post-hoc procedure must be taking
into account. A family of hypothesis, in this case h = 6 hypothesis, is defined to test
each possible pairs of comparisons between algorithms. The p-value of every hypothesis
between the algorithm i and j is obtained through the conversion of the average ranks
of each algorithm by using a normal approximation. The z-values are used to find the
corresponding probability (p-value) from the standard normal distribution N (0, 1). The



124 Chapter 4. Experimental results and discussions

Table 18 – Friedman statistics and related p-values are shown considering both error
thresholds. The critical value is obtained through a Chi-squared with confidence
level = 1− α (α = 0.05) and v = k − 1 (k = 4) degrees of freedom.

ξ = 10−2 ξ = 10−8

Friedman statistic 12.99 34.74
p-value 4.6583 · 10−3 1.3825 · 10−7

Critical value (χ2
0.95,3) 7.8147

Source: produced by the author.

Friedman z-value is computed as

zij = Ri −Rj√
k(k+1)

6n

. (4.6)

The unadjusted p-values are shown in the Table 19. These p-values are not adequate
to be directly compared with the significance level due to the FWER2. To compensate the
family error accumulated, adjusted p-values are used to directly compare the values with
the significance level. In this thesis, three adjustment procedures are provided: Nemenyi,
Holm, and Shaffer. More information about each of the procedures can be found in
(DERRAC et al., 2011). From Table 19, the (∗) symbol indicates which algorithm is better
than other. As previously observed, all PSO versions equipped with the fast information
exchange have better results with statistical significance. The smaller the p-value, the
stronger the evidence against H0. As can be seen, the statistical significance in this scenario
seems to be more related to the way the information flow among the particles rather than
the manner the random variables are handling in the velocity update equation.

Table 19 – Friedman p-values and adjusted p-values for multiple comparisons among all
algorithms.

Hyphotesis ξ = 10−2 ξ = 10−8

Unadjusted p Nemenyi Holm Shaffer Unadjusted p Nemenyi Holm Shaffer
Ψlate
var vs Ψlate

inv 0.9310 1 1 1 0.2987 1 0.3317 0.3317
Ψlate
var vs Ψfast*

var 0.0243 0.1461 0.0974 0.0730 3.2256 · 10−5 1.9354 · 10-4 1.6128 · 10-4 9.6769 · 10-5

Ψlate
var vs Ψfast*

inv 0.0043 0.0256 0.0256 0.0256 0.0056 0.0335 0.0168 0.0168
Ψlate
inv vs Ψfast*

var 0.0304 0.1823 0.0974 0.0911 2.0346 · 10−7 1.2207 · 10-6 1.2207 · 10-6 1.2207 · 10-6

Ψlate
inv vs Ψfast*

inv 0.0056 0.0335 0.0279 0.0256 1.3868 · 10−4 8.3208 · 10-4 5.5472 · 10-4 4.1604 · 10-4

Ψfast
var vs Ψfast

inv 0.5444 1 1 1 0.1659 0.9951 0.3317 0.3317

Source: produced by the author.

The second part of the statistical hypothesis analysis evaluates two pairs of com-
parisons: 1) Ψvar vs Ψinv ; 2) Ψlate vs Ψfast . The first comparison investigates whether the
2 The Family-Wise Error Rate for multiple comparisons can be computed as 1− (1− α)h. Thus, the

probability of making one or more Type I error is 26.5, which is quite high.
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rotational information influences the performance of the algorithms when both exchanges
of information are associated with the same algorithm. The second comparison verifies
whether the type of information exchange benefits somehow the results obtained by consid-
ering the union of the rotational information. The following unions regarding the results
presented in Table 15 are considered:

Ψvar = Ψlate
var ∪Ψfast

var

Ψinv = Ψlate
inv ∪Ψfast

inv

Ψlate = Ψlate
var ∪Ψlate

inv

Ψfast = Ψfast
var ∪Ψfast

inv

A non-parametric test, such as Wilcoxon’s test, aims to detect significant differences
between two sample means and can be applied to continuous data through a ranking-based
transformations (HOLLANDER; WOLFE; CHICKEN, 2013). Herein, rank is to assign
values to samples from 1 to m (number of problems). Equations 4.7 and 4.8 define the
sum of ranks based on the difference di between the performance scores of two algorithms
on ith out of m problems, both described as

R+ =
∑
di>0

rank(di) + 1
2
∑
di=0

rank(di) (4.7)

and
R− =

∑
di<0

rank(di) + 1
2
∑
di=0

rank(di). (4.8)

The differences are ranked according to their absolute values. The rank of tie cases
(when two or more equal di values are found) are replaced by the average rank that would
originally be assigned to dk,...,l (such that dk = dk+1 = . . . = dl, with k < l). Ranks of
di = 0 are split evenly among the sums, ignoring one difference if the total is an odd
number. The variable R+ is the sum of positive ranks for the problems whose algorithm 1
surpassed the algorithm 2, and R− is the sum of ranks for the opposite. The goal is to
count the number of cases in which an algorithm is the overall winner.

The table of reference for critical values for the two-tailed of the Wilcoxon T
distribution is available in (ZAR, 2007). Note that, the authors consider to consult critical
values up to the maximum number of problems m ≤ 50. For m > 50, a procedure to
compute the p-value is performed. Table 20 exhibits the statistical hypothesis test for
variant and invariant PSO versions. The number of optimization problem is m = 80. Thus,
the p-value is considered in this case to reject or not H0, instead of searching for critical
values in the table of reference. There is no statistical difference between the rotationally
variant and invariant PSO versions, although the particular results of Ψvar are a bit better.



126 Chapter 4. Experimental results and discussions

This indicates that from the statistical point of view, H0 must be accepted as true, as the
minimum values for the levels of significance to reject H0 should be 84.79% (ξ = 10−2)
and 17.32% (ξ = 10−8). Therefore, it is expected that the variant and invariant versions of
PSO provide similar results when applied in optimization problems.

Table 20 – Wilcoxon signed ranks test results with significance level α = 0.05. The results
of four PSO versions were grouped into two: variant and invariant.

Hypothesis ξ = 10−2 ξ = 10−8

R+ R− p R+ R− p
Ψvar vs Ψinv 1660 1580 0.8479 1904 1336 0.1732

Source: produced by the author.

Finally, the second result related to the comparison of two algorithms is available in
Table 21, where Ψlate and Ψfast are under consideration, grouping all dimensional problems
along with late and fast PSO versions, again with m = 80. The overall analysis shows
Ψfast as the best version of PSO, regardless of the rotation (or not) of a particle motion.
As expected, the null hypothesis is rejected with a very low probability of making a Type
I error, i.e., a false-positive indication of statistical significance between the algorithms.
This significance difference confirms what was observed by the Friedman’s test in the
Table 18 where the fast information flow, i.e., updating the global best position soon after
the movement of a particle, is rather preferable than after a complete iteration.

Table 21 – Wilcoxon signed ranks test results with significance level α = 0.05. The results
of four PSO versions were grouped into two: late and fast.

Hypothesis ξ = 10−2 ξ = 10−8

R+ R− p R+ R− p
Ψlate vs Ψfast∗ 692 2548 8.5489 · 10-6 496 2744 7.0056 · 10-8

Source: produced by the author.

4.3 Results: ISAPSO algorithm
Since the methodology to evaluate a new algorithm is already established by both

previously Sections 4.1 and 4.2, this section evaluates ISAPSO algorithm by applying it
in a set of optimization problems. The idea of evaluating the algorithm in test functions
are based on SAPSO algorithm in which ten benchmark optimization problems were
under consideration. However, in this context, ISAPSO algorithm is performed in CEC
2017 benchmark suite presented in Table 13. Those optimization problems are difficult
to optimize, as all functions are rotated, translated, and some of them are composition
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functions. All numerical simulations are based on the minimum number of experiments
found in Section 3.3.4, which is E = 55.

4.3.1 Numerical simulation on benchmark functions

To accomplish this experiments, ISAPSO algorithm is compared with seven other
PSO variants strictly related to the approach, also including SAPSO algorithm. The test
functions are predefined with 2, 10, and 30 number of dimensions. The stop criterion in all
function is ε = 10−8. The maximum number of iteration is T = 1000 for all algorithms and
their parameter settings are the ones presented in Appendix B in the Table 28. ISAPSO
algorithm defined the inertia weight w = 0.7298, the social coefficient c1 = 1.4962 and
the gradient coefficient c2 = 10−2 in all test functions. The angle of rotation is based on
WPSO algorithm (WILKE; KOK; GROENWOLD, 2007b), which is α = 3. The lower
(dlow) and upper (dhigh) bounds for the diversity control are, respectively, 10−2 and 0.25
for all test functions.

Since most optimization problems have different global minimum value, Table 22
shows the average error rate obtained by the difference between the known global minimum
value and the value found by each algorithm. In this form, the results are in accordance
with the lower the value the better the results. The last line is simply the sum of ranks of
each algorithm that goes from 1 to 8.

Table 22 – Average error rate obtained from CEC 2017 benchmark functions.

fi d ARPSO GPSO DGHPSOGS SPSO WPSO BPSO SAPSO ISAPSO

f1

2 1.4831 · 103 8.4579 · 10-8 1.4034 · 103 9.7074 · 102 5.9158 · 10−8 2.4165 · 10−2 1.6252 · 101 6.0512 · 10−1

10 1.5985 · 109 8.9200 · 10-9 1.7853 · 108 5.1574 · 103 7.0624 · 103 2.0202 · 104 2.4202 · 103 1.2215 · 103

30 2.5758 · 1010 9.9116 · 102 9.4853 · 109 6.4100 · 103 5.5135 · 103 1.1662 · 106 5.0265 · 103 9.5499 · 104

f2

2 4.6094 · 10−9 8.3569 · 10−6 4.4206 · 10−9 4.8907 · 10−9 5.0468 · 10−9 4.0575 · 10−7 2.1367 · 10−8 1.9436 · 10-9

10 6.8008 · 103 2.1860 · 10−8 7.3862 · 103 9.1150 · 10−9 8.8266 · 10−9 4.4078 · 10−2 6.9645 · 10-9 4.5218 · 10-9

30 1.4756 · 105 1.5524 · 10-5 1.2845 · 105 9.0519 · 104 3.5981 · 104 6.6638 · 103 3.0443 · 104 4.3111 · 103

f3

2 4.1464 · 10−9 2.8405 · 10−9 4.9634 · 10−9 6.1877 · 10−9 4.4528 · 10−9 4.8064 · 10−9 5.6839 · 10−9 1.9121 · 10-9

10 1.1774 · 102 7.2483 · 10−2 3.8570 · 101 5.9572 7.2485 · 10−2 2.0223 3.4765 · 10−2 3.8670 · 10-3

30 3.4832 · 103 1.6671 1.0902 · 103 7.2141 · 101 5.5267 · 101 6.1164 · 101 1.6062 · 101 1.0899 · 102

f4

2 5.5079 · 10−2 3.3213 · 10−4 4.5279 · 10−9 9.0451 · 10−2 4.1607 · 10−1 5.2461 · 10−1 1.1164 · 10−1 4.3368 · 10-9

10 4.2577 · 101 3.7622 · 101 2.8569 · 101 3.4118 · 101 4.8029 · 101 5.4968 · 101 4.7409 · 101 1.5947 · 101

30 3.1996 · 102 2.8611 · 102 1.8180 · 102 1.8743 · 102 2.2808 · 102 2.5188 · 102 2.1658 · 102 1.6544 · 102

f5

2 4.6972 · 10−9 7.7109 · 10−9 5.1564 · 10−9 5.2709 · 10−9 4.6474 · 10−9 7.5340 · 10−8 4.2638 · 10-9 4.9434 · 10−9

10 3.3666 · 102 2.4937 · 102 1.4763 · 102 1.6731 · 102 2.1299 · 102 3.8567 · 102 1.3070 · 102 1.6614 · 10-1

30 7.2878 · 103 8.8381 · 103 5.3240 · 103 4.0702 · 103 3.8335 · 103 5.0295 · 103 3.4222 · 103 4.5183 · 103

f6

2 1.8234 · 101 2.9805 3.1759 2.0555 · 101 1.6185 · 101 2.0890 · 101 1.2878 · 101 2.7093
10 1.1200 · 103 1.0958 · 103 9.4428 · 102 9.5647 · 102 1.1440 · 103 1.1519 · 103 1.2696 · 103 8.9359 · 102

30 6.0677 · 103 5.0655 · 103 4.9758 · 103 4.2108 · 103 4.3209 · 103 4.2840 · 103 4.3205 · 103 3.8937 · 103

f8

2 5.0338 · 10−5 4.9521 2.6008 · 10−5 7.0898 · 10-9 1.0909 · 101 5.5556 · 10−3 3.6365 1.9640 · 10−5

10 9.4641 · 102 6.0381 · 102 7.3807 · 102 5.4368 · 102 6.0921 · 102 7.2021 · 102 5.2273 · 102 5.1094 · 102

30 5.7795 · 103 3.8238 · 103 4.5192 · 103 3.5250 · 103 4.0518 · 103 5.1052 · 103 2.9448 · 103 3.5152 · 103

f9

2 6.9466 · 10-3 5.4096 3.4442 1.8190 · 101 7.6491 7.3423 5.8938 2.4780 · 10−2

10 4.4195 · 102 3.9990 · 102 4.2716 · 102 4.0111 · 102 4.7874 · 102 4.5912 · 102 4.6193 · 102 3.9647 · 102

30 8.3421 · 102 5.0770 · 102 6.8814 · 102 5.2179 · 102 5.0062 · 102 5.1275 · 102 8.3483 · 102 5.8442 · 102

f10

2 6.8253 · 101 7.1834 · 101 7.7605 · 101 1.1818 · 102 1.0643 · 102 1.3008 · 102 7.2803 · 101 4.0000 · 101

10 6.5113 · 102 4.4980 · 102 6.1151 · 102 4.2060 · 102 4.8300 · 102 4.6524 · 102 6.4834 · 102 4.4884 · 102

30 2.2296 · 103 3.6839 · 102 1.5455 · 103 4.6973 · 102 5.0001 · 102 4.6358 · 102 4.2966 · 102 1.0459 · 102

165 103 136 118 128 155 112 55

Source: produced by the author.
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In general, ISAPSO algorithm has obtained the lower error rates in most opti-
mization problems. Although it can be considered a naive evaluation, this performance
rendered the lower sum of rank for the proposed approach, providing better results even
when compared with GPSO and SAPSO algorithms, respectively second and third place.
Further evaluations, regarding the statistical hypothesis testing, are provided to certify
whether there is statistical significance in the comparisons.

Table 23 summarizes other performance criteria, such as success rate, computational
time and minimum number required to stop the algorithm, to analyze. Clearly, ISAPSO
algorithm has the best average success rate when optimization problems are set as 2-
dimensions. However, for 10-dimensions, GPSO algorithm has higher success rate than
ISAPSO algorithm. Another important consideration is that the ISAPSO algorithm is
faster than SAPSO algorithm. In ISAPSO algorithm, the gradient calculus is performed
just when required, i.e., when Ii = 0, which in turn speed up the execution of the algorithm.
The fastest algorithm among the PSOs under evaluation is the ARPSO algorithm. This
algorithm has no gradient calculus and no rotation matrix to build, which contributes
to be executed faster. In contrast, ARPSO algorithm holds the worst accuracy results in
average (the sum of rank is 165 from Table 22). GPSO and WPSO algorithms usually
stop sooner than the other algorithms. This can be seen, respectively, when the functions
have 2-dimensions and 10-dimensions. No further evaluations can be made for higher
dimensions, since no algorithm has stopped before the maximum number of iterations has
been reached.

Table 23 – Summary of performance criteria: success rate, computational time and mini-
mum number of iterations to stop the algorithm. The results are grouped per
dimensions.

d Criterion ARPSO GPSO DGHPSOGS SPSO WPSO BPSOb SAPSO ISAPSO

2
sr 53.3334 57.3723 53.7378 58.7878 57.9811 12.1211 46.6667 61.9189
time 0.07668 1.09898 0.305 0.2428 0.2688 1.0416 0.7778 0.5873
iter. 551.6747 451.6388 667.9838 481.4263 462.8187 919.8525 672.099 613.3313

10
sr 0 24.8478 0 11.3133 14.95 0 1.4144 11.3133
time 0.1517 2.3475 1.3758 0.5011 0.6209 1.2062 2.1038 1.4052
iter. 1000 790.9414 1000 939.0687 932.7798 1000 997.8566 949.9515

30
sr 0 0 0 0 0 0 0 0
time 0.2676 6.4561 6.8874 0.652 1.0846 1.5711 7.6602 5.7626
iter. 1000 1000 1000 1000 1000 1000 1000 1000

Source: produced by the author.

4.3.2 Friedman’s statistical test with 1× k comparisons

Statistical inference described in this section is heavily based on Section 4.2.3.
The main goal is to investigate whether the results presented in Table 22 has statistical
significance in the context of error rates. Again, Friedman’s test is used as a statistical
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hypothesis test in the following experiments. First of all, Table 24 shows the average ranks
of each PSO version obtained by the ranking-based transformation. ISAPSO algorithm
comes in first place, while GPSO and SAPSO come in second and third place, respectively.
These ranks are used to perform the Friedman statistic illustrated in Table 25.

Table 24 – Average ranks achieved by the Friedman’s test using Table 22.

Algorithm ξ = 10−8 Order
ISAPSO 2.037 1
GPSO 3.8148 2
SAPSO 4.1481 3
SPSO 4.3704 4
WPSO 4.7407 5

DGHPSOGS 5.037 6
BPSO 5.7407 7
ARPSO 6.1111 8

Source: produced by the author.

Table 25 shows the Friedman statistic, p-value and critical value. As one can
infer, Friedman statistic is above critical value. Also, p-value is smaller than the chosen
significance level (α = 0.05). This indicates that there is at least one significant difference
among the algorithms’ results.

Table 25 – Friedman statistics and related p-values are shown considering both error
thresholds. The critical value is obtained through a Chi-squared with confidence
level = 1− α (α = 0.05) and v = k − 1 (k = 4) degrees of freedom.

ξ = 10−8

Friedman statistic 50.2099
p-value 1.3137 · 10−8

Critical value (χ2
0.95,7) 14.0671

Source: produced by the author.

A post-hoc procedure to find the statistical significance between the algorithms is
taking into account. The type of post-hoc procedure used here is 1× k (in contrast with
k × k method used earlier), i.e., there is a control method (ISAPSO algorithm) that is
compared with k − 1 algorithms (excluding the control method). In this case, a family
of h = 7 hypothesis is defined to test each pair of possible comparisons. The goal of this
type of post-hoc procedures is to test whether a newly proposed algorithm is better than
existing ones.

The unadjusted p-values are presented in Table 26. As previously stated, these
p-values are not suitable to be compared directly with the significance level, since they
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Table 26 – Friedman p-values and adjusted p-values by considering ISAPSO algorithm as
the control method.

Algorithm Unadjusted p Bonferroni-Dunn Holm Hockberb Hommel Holland Finner Li
SAPSO 1.5420 · 10−3 1.0794 · 10−2 3.0839 · 10−3 3.0839 · 10−3 3.0839 · 10−3 3.0816 · 10−3 1.7987 · 10−3 1.5396 · 10−3

ARPSO 9.8940 · 10−10 6.9258 · 10−9 6.9258 · 10−9 6.9258 · 10−9 6.9258 · 10−9 6.9258 · 10−9 6.9258 · 10−9 9.8940 · 10−10

GPSO 7.6608 · 10−3 5.3625 · 10−2 7.6608 · 10−3 7.6608 · 10−3 7.6608 · 10−3 7.6608 · 10−3 7.6608 · 10−3 7.6025 · 10−3

DGHPSOGS 6.7953 · 10−6 4.7567 · 10−5 3.3977 · 10−5 3.3977 · 10−5 3.3977 · 10−5 3.3976 · 10−5 1.5856 · 10−5 6.7953 · 10−6

SPSO 4.6526 · 10−4 3.2568 · 10−3 1.3958 · 10−3 1.3958 · 10−3 1.3958 · 10−3 1.3951 · 10−3 6.5130 · 10−4 4.6504 · 10−4

WPSO 5.0015 · 10−5 3.5011 · 10−4 2.0006 · 10−4 2.0006 · 10−4 2.0006 · 10−4 2.0005 · 10−4 8.7525 · 10−5 5.0013 · 10−5

BPSO 2.7673 · 10−8 1.9371 · 10−7 1.6604 · 10−7 1.6604 · 10−7 1.6604 · 10−7 1.6604 · 10−7 9.6856 · 10−8 2.7673 · 10−8

Source: produced by the author.

inherits the family-wise error rate due to multiple comparisons (family of hypothesis).
The probability of making one or more Type I error is 30.17%, which is rather high.
Thus, the adjusted p-values can deal with this problem by considering the family error
accumulated and can be compared directly with the significance level chosen. Table 26
also provides seven algorithms for adjustment of p-values. One can see, even after the
adjustment of p-values, ISAPSO algorithm shows a significant improvement over all other
PSO algorithms. Li’s procedure provides the most powerful behavior, reaching the lowest
p-values in the comparisons.
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5 Conclusion

This thesis presented enhancements for the PSO algorithm by improving its global
search mechanism. The first improvement was the SAPSO algorithm, a semi-autonomous
particle swarm optimizer, which uses the gradient information along with attractive and
repulsive scheme to reduce computational efforts of local investigation and avoids local
optima as a final result. In the proposed algorithm, each particle has the autonomy to
decide between follow its own negative gradient direction or follow the global tendency of
the swarm, i.e., the global best position found so far. This decision is taken individually
by each particle at each iteration of the search process. The second improvement yielded
a new version of SAPSO algorithm, which was called ISAPSO. Unlike the dynamic
parameters of SAPSO algorithm for each test function, ISAPSO algorithm used static
parameters, regarding social and gradient coefficients, and a new velocity update equation
that embodied a rotation matrix to face the lacking of directional diversity. ISAPSO
algorithm was a result of the empirical analysis on rotation and information exchange
among particles. In this numerical simulation, the goal was to discover whether rotation
and information exchange affects the performance of classical PSO versions. Additionally,
a new method to select a minimum number of executions based on the Law of Large
Number was also provided.

Regarding the SAPSO algorithm, the particles are called semi-autonomous which
has a relation to the internal decision taken by each particle of the swarm, and the attractive
and repulsive schemes. SAPSO algorithm starts with each particle investigating its own
area near to its initial position in the search space, i.e., the swarm is in the attraction
phase at first. When the swarm loses its diversity, it switches to the repulsion phase and
each particle starts to follow the opposite direction of the global tendency. This behavior
permits the swarm to avoid a local minimum as a final result and also prevents premature
convergence. When the diversity is recovered, i.e., the diversity value is above an upper
threshold, the whole swarm turns to the attraction phase again, thus each particle uses
the negative gradient direction, searching for other promising areas. This partial autonomy
given to the particles has brought promising results when applied in multimodal functions,
specially when compared to PSOs with similar behavior of attraction and repulsion, such
as ARPSO and DGHPSOGS.

The numerical results were provided to certify that the proposed method can reach
at least the same performance of other well-known PSOs. The results showed that the
proposed SAPSO algorithm provided better results regarding the findings of a global
minimum and fine-tuning of the final solution, although higher-dimensional problems (above
30 dimensions) has been time-consuming due to the use of gradient-based information by
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each particle, which in turns can be considered as one of the the current limitations of
SAPSO (consequently, ISAPSO algorithm as well). Despite this, the proposed approach
is considered the most reliable algorithm to find the global minimum of multimodal test
functions. The analysis was conducted on the application of the SAPSO algorithm and
other three PSOs on the De Jong’s benchmark optimization problems. SAPSO algorithm
showed to perform better for a variety of test functions and different dimensional settings.
Due to a similar performance of SAPSO and GPSO algorithms when the dimensions were
set as 10, 20 and 30, other tests were applied in even higher dimensional settings. When
the SAPSO and GPSO algorithms were applied in multimodal functions with 60 to 150
dimensions, the SAPSO algorithm showed to perform significantly better in four out of
five multimodal test functions. This result is expected due to the “no free lunch theorem”.
Besides, the SAPSO algorithm provides features to avoid local optima and premature
converge.

Experimental tests were performed and analysed to ensure that the diversity
control mechanism plays an important role in the avoidance of local minima. The proposed
algorithm kept the diversity of the swarm adaptively in the search process when compared
to ARPSO and DGHPSOGS algorithms. In addition, the analysis has shown that the
SAPSO algorithm applied a proper exploration and exploitation trade-off, using the
repulsion phase with more accuracy than the other PSOs. The proposed algorithm used
less repulsion phases during the search process of the global minimum, due to the smooth
decrease of the diversity value right after a repulsion phase occurs. Even with less repulsion
phases, the SAPSO algorithm was able to properly explore the search space and still find
the global minimum in all test functions.

This thesis also presented a discussion about rotation and information exchange
mechanism of PSO. Throughout the work, a methodology to make multiple comparisons
among classical versions of PSO algorithm based on Clerc’s rules was performed. Rule 1
was covered by the shifted and rotated features applied in each test function. Rule 2 was
fulfilled by the method of selecting the minimum number of executions to provide stable
and reliable results for further analyses. The experiments assume multiple performance
criteria to evaluate the PSO versions, thus Rule 3 was accomplished. Finally, Rules 4
and 5 were carried out by floating-point numbers with double-precision of 64 bits and a
Mersenne Twister library, respectively.

A method to estimate a minimum number of executions based on the characteristics
of each optimization problem and the performance of the algorithm was proposed. The
method assumed the success rate as the performance measure of the algorithm in relation
to the optimization problems. When the success rate value is close enough to the average
success rate value, the proposed algorithm stops and reports the number of executions
required to stabilize the curve. If more than one optimization problem is under evaluation,
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the average number of executions can be considered. All experiments of this thesis were
based on the number of executions required to find stable results in multiple optimization
problems.

Experiments were carried out on multiple optimization problems with different
dimensional scenarios to evaluate four PSO versions. Two non-parametric hypothesis tests
revealed no statistical significance between the rotationally variant and invariant versions
of PSO. However, the rotationally variant version was the overall winner in the sum of
ranks, regarding the Wilcoxon signed test. On the other hand, when the PSO versions use a
fast information exchange among particles, the null hypothesis was rejected with a very low
probability. However, the late information exchange among particles was computationally
faster than the fast information exchange version. Although rotation variance is related to
the bias phenomenon in PSO algorithm, to achieve accurate results, the general suggestion
is to couple the fast information exchange in the rotationally variant PSO algorithm.

ISAPSO algorithm could be developed in which is based on the results found by
the empirical analyses. It was rather preferable to work with rotation invariance property
and face the lacking of directional diverse, than facing a bias phenomenon with rotation
variance property. The new velocity update equation embodied a rotation matrix that is
activated when the swarm is in the repulsion phase. This conception deals with the low
directional diverse, providing a small perturbation in the opposite directions of social and
gradient components, which restores part of the directional diverse. The algorithm is strictly
rotationally invariant when swarm is in the attraction phase and rotationally invariant in
stochastic sense when swarm is in the repulsion phase. A consistent numerical simulation
showed that ISAPSO algorithm has the potential to be among the best well-known
rotationally invariant algorithm, as the statistical hypothesis tests indicated statistical
significant improvements when compared with other related PSOs.

5.1 Future research
Some future researches derived from this thesis are described below.

• To develop a framework containing all the codes related to the PSO algorithms
and statistical hypothesis tests developed in this thesis. The goal is to provide an
easy-to-use software able to deal with different optimization problems.

• To deepen the theoretical studies about relation between the following properties:
rotation (in)variance and separability of the objective function. Furthermore, a
consistent relation between the condition number and the algorithm’s performance
is of interest.
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• To develop an adaptive PSO algorithm. This PSO version must varying its main
parameters (inertia weight, cognitive and social coefficients) according to the needs
of the swarm, i.e., if the swarm is converging to some prominent area of the search
space, the parameters must represent this willing. The same endeavor has to be
taken when the swarm is trapped into a local minima.

• To idealize a Tabu list for continuous optimization, similar to the one presented in the
Tabu search algorithm. This idealized structure must forbid particles to reevaluate
areas already visited during the search process.

• To provide a rotationally variant PSO version free from bias regarding the directions
of the coordinate axes.

• To hybridize swarms constituting with rotationally variant and rotationally invariant
particles.

• To develop a parallel PSO version to accurate the best global position while the
algorithm is still running. As soon as a new global best position is updated, a thread is
triggered to accurate the global memory. The thread can use a deterministic technique
such as Gradient descent and Newton’s algorithms to optimize that position as initial
guess.
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APPENDIX A – Average angle analysis

Figure 19 – Average θ of the swarm according to the movement of particles along the
iterations in high dimensions.
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APPENDIX B – PSO parameters

Table 27 – PSO parameters on De Jong’s benchmark optimization problems.

fi SAPSO GPSO ARPSO DGHPSOGS
(attraction phase)

DGHPSOGS
(repulsion phase)

f1
c1 = 2

c2 = 10−2

c1 = 2
c2 = 2

w = 0.7→ 0.4
c1 = 2
c2 = 2

w = 0.9→ 0.4
c1 = 2
c2 = 2.1

w = 0.9→ 0.4
c1 = 2.1
c2 = 2.1

f2
c1 = 2

c2 = 10−3

w = 0.9→ 0.4
c1 = 2.3
c2 = 1.4

f3
c1 = 3

c2 = 10−3

w = 0.9→ 0.4
c1 = 2.1
c2 = 2.8

f4
c1 = 3

c2 = 10−2

w = 0.9→ 0.4
c1 = 2.5
c2 = 1.4

f5
c1 = 4

c2 = 10−1

w = 0.9→ 0.4
c1 = 2
c2 = 2

f6 c1 = 2
c2 = 10−2

w = 0.9→ 0.4
c1 = 2.1
c2 = 1.8

f7
w = 0.9→ 0.4

c1 = 2
c2 = 2

f8
c1 = 4

c2 = 10−1

f9 c1 = 2
c2 = 10−2f10

Table 28 – PSO parameters on CEC 2017 benchmark optimization problems.

fi SAPSO GPSO ARPSO DGHPSOGS SPSO WPSO BPSO ISAPSO
f1

w = 0.7298
c1 = 1.4962
c2 = 10−2

c1 = 2
c2 = 2

w = 0.7→ 0.4
c1 = 2
c2 = 2

attraction phase:
w = 0.9→ 0.4

c1 = 2
c2 = 10−2

repulsion phase:
w = 0.9→ 0.4

c1 = 2.1
c2 = 2.1

w = 0.721
c1 = 1.193
c2 = 1.193

w = 0.5
c1 = 2
c2 = 2

w = 0.7298
c1 = 1.4962
c2 = 1.4962

w = 0.7298
c1 = 1.4962
c2 = 10−2

f2
f3
f4
f5
f6
f8
f9
f10





139

Publication

Papers related to the thesis

• Reginaldo Santos, Gilvan Borges, Adam Santos, Moisés Silva, Claudomiro Sales,
João C. W. A. Costa. “Empirical study on rotation and information exchange in
particle swarm optimization”. Journal of Swarm and Evolutionary Computation,
2019. (status: under review)

• Reginaldo Santos, Gilvan Borges, Adam Santos, Moisés Silva, Claudomiro Sales,
João C. W. A. Costa. “A semi-autonomous particle swarm optimizer based on gradient
information and diversity control for global optimization”. Journal of Applied Soft
Computing, 2018.

Papers submitted

• Caio Flexa, Reginaldo Santos, Walisson Gomes, Claudomiro Sales, João Costa.
“Mutual Equidistant-scattering Criterion: a new index for crisp clustering”. Expert
Systems With Applications, 2018.

• Walisson Gomes, Reginaldo Santos, Claudomiro Sales. “Bachome: An Aid Tool
in Natural Selection Teaching controlled by Genetic Algorithm”. Revista do IEEE
América Latina, 2017.

Papers published during the thesis period

• Walisson Gomes, Reginaldo Santos, Claudomiro Sales. “An Improved Artificial Bee
Colony Algorithm with Diversity Control”. 7th Brazilian Conference on Intelligent
Systems (BRACIS), 2018.

• Caio Flexa, Reginaldo Santos, Walissom Gomes, Claudomiro Sales. “A Novel
Equidistant-Scattering-based Cluster Index”. 7th Brazilian Conference on Intelligent
Systems (BRACIS), 2018.

• Moisés Silva, Adam Santos, Reginaldo Santos, Eloi Figueiredo, Claudomiro Sales,
João C. W. A. Costa. “Deep principal component analysis: An enhanced approach
for structural damage identification”. Structural Health Monitoring, 2018.



140 Publication

• Adam Santos, Moisés Silva, Reginaldo Santos, Eloi Figueiredo, Nuno Maia, João
Costa. “ Applicability of an output-only structural damage detection based on transmis-
sibility measurements and kernel principal component analysis”. Simpósio Brasileiro
de Telecomunicações e Processamento de Sinais, 2018.

• Moisés Silva, Adam Santos, Reginaldo Santos, Eloi Figueiredo, Claudomiro Sales,
João C. W. A. Costa. “Composing robust damage-sensitive features with deep neural
networks”. European Workshop on Structural Health Monitoring Series, 2018.

• Moisés Silva, Adam Santos, Reginaldo Santos, Eloi Figueiredo, Claudomiro Sales,
João C. W. A. Costa. “Agglomerative concentric hypersphere clustering applied to
structural damage detection”. Mechanical Systems and Signal Processing, 2017.

• Adam Santos, Reginaldo Santos, Moisés Silva, Eloi Figueiredo, Claudomiro Sales,
João C. W. A. Costa. “A Global Expectation-Maximization Approach Based on
Memetic Algorithm for Vibration-Based Structural Damage Detection”. IEEE Trans-
actions on Instrumentation and Measurement, 2017.

• Moisés Silva, Adam Santos, Reginaldo Santos, Eloi Figueiredo, Claudomiro Sales,
João C. W. A. Costa. “A novel unsupervised approach based on a genetic algorithm
for structural damage detection in bridges”. Engineering Applications of Artificial
Intelligence, 2016.

• Adam Santos, Eloi Figueiredo, Moisés Silva, Reginaldo Santos, Claudomiro Sales,
João C. W. A. Costa. “Genetic-based EM algorithm to improve the robustness of
Gaussian mixture models for damage detection in bridges”. Structural Control &
Health Monitoring, 2016.

• Adam Santos, Moisés Silva, Reginaldo Santos, Eloi Figueiredo, Claudomiro Sales,
João C. W. A. Costa. “A global expectation-maximization based on memetic swarm
optimization for structural damage detection”. Structural Health Monitoring, 2016.

• Manoel Afonso Lima, Claudomiro Sales, Adam Santos, Reginaldo Santos, Moisés
Silva, João C. W. A. Costa, Marissa Carvalho, Michel Cruz. “A framework for
data compression and damage detection in structural health monitoring applied on a
laboratory three-story structure. Revista Brasileira de Computação Aplicada”. Revista
Brasileira de Computação Aplicada, 2016.



141

Bibliography

ACHARYA, J.; MEHTA, M.; SAINI, B. Particle swarm optimization based load balancing
in cloud computing. In: 2016 International Conference on Communication and Electronics
Systems (ICCES). [S.l.: s.n.], 2016. p. 1–4. Cited on page 29.

AHMED, A. et al. Particle swarm optimization for n-queens problem. v. 1, 05 2012.
Cited on page 23.

AKSU, I. O.; COBAN, R. Training the multifeedback-layer neural network using the
particle swarm optimization algorithm. In: 2013 International Conference on Electronics,
Computer and Computation (ICECCO). [S.l.: s.n.], 2013. p. 172–175. Cited on page 23.

ARUMUGAM, M. S.; RAO, M. V. C. On the performance of the particle swarm
optimization algorithm with various inertia weight variants for computing optimal control
of a class of hybrid systems. Discrete Dynamics in Nature and Society, Hindawi Limited,
v. 2006, p. 1–17, 2006. Cited 3 times on pages 48, 49, and 76.

AWAD, N. H. et al. Problem Definitions and Evaluation Criteria for the CEC 2017 Special
Session and Competition on Single Objective Real-Parameter Numerical Optimization.
[S.l.], 2017. Cited on page 37.

BANSAL, J. C. et al. Inertia weight strategies in particle swarm optimization. In: 2011
Third World Congress on Nature and Biologically Inspired Computing. [S.l.: s.n.], 2011. p.
633–640. Cited on page 49.

BEHESHTI, Z.; SHAMSUDDIN, S. M. Non-parametric particle swarm optimization for
global optimization. Applied Soft Computing, v. 28, p. 345 – 359, 2015. ISSN 1568-4946.
Cited on page 26.

BEHESHTI, Z.; SHAMSUDDIN, S. M. H.; HASAN, S. Mpso: Median-oriented particle
swarm optimization. Applied Mathematics and Computation, v. 219, n. 11, p. 5817 – 5836,
2013. ISSN 0096-3003. Cited on page 26.

BENTO, D. et al. Genetic algorithm and particle swarm optimization combined with
powell method. AIP Conference Proceedings, v. 1558, n. 1, p. 578–581, 2013. Cited on
page 23.

BERGH, F. van den; ENGELBRECHT, A. A study of particle swarm optimization
particle trajectories. Information Sciences, v. 176, n. 8, p. 937 – 971, 2006. ISSN 0020-0255.
Cited on page 24.

BIYANTO, T. R. et al. Killer whale algorithm: An algorithm inspired by the life of
killer whale. Procedia Computer Science, v. 124, p. 151 – 157, 2017. ISSN 1877-0509. 4th
Information Systems International Conference 2017, ISICO 2017, 6-8 November 2017,
Bali, Indonesia. Cited on page 33.

BLUM, C. et al. Hybrid metaheuristics in combinatorial optimization: A survey. Applied
Soft Computing, v. 11, n. 6, p. 4135 – 4151, 2011. ISSN 1568-4946. Cited on page 33.



142 Bibliography

BOCHENEK, B.; FORYŚ, P. Structural optimization for post-buckling behavior using
particle swarms. Structural and Multidisciplinary Optimization, v. 32, n. 6, p. 521–531,
Dec 2006. ISSN 1615-1488. Cited on page 46.

BONYADI, M. R.; MICHALEWICZ, Z. A locally convergent rotationally invariant
particle swarm optimization algorithm. Swarm Intelligence, v. 8, n. 3, p. 159–198, Sep
2014. Cited 5 times on pages 32, 35, 36, 62, and 89.

BONYADI, M. R.; MICHALEWICZ, Z.; LI, X. An analysis of the velocity updating
rule of the particle swarm optimization algorithm. Journal of Heuristics, v. 20, n. 4, p.
417–452, Aug 2014. Cited 4 times on pages 32, 36, 62, and 89.

BOUSSAïD, I.; LEPAGNOT, J.; SIARRY, P. A survey on optimization metaheuristics.
Information Sciences, v. 237, p. 82 – 117, 2013. ISSN 0020-0255. Prediction, Control and
Diagnosis using Advanced Neural Computations. Cited on page 33.

BRATTON, D.; KENNEDY, J. Defining a standard for particle swarm optimization. In:
2007 IEEE Swarm Intelligence Symposium. [S.l.: s.n.], 2007. p. 120–127. Cited on page
46.

CAMCI, E. et al. An aerial robot for rice farm quality inspection with type-2 fuzzy neural
networks tuned by particle swarm optimization-sliding mode control hybrid algorithm.
Swarm and Evolutionary Computation, v. 41, p. 1 – 8, 2018. ISSN 2210-6502. Cited on
page 29.

CH, S.; MATHUR, S. Particle swarm optimization trained neural network for aquifer
parameter estimation. KSCE Journal of Civil Engineering, v. 16, n. 3, p. 298–307, Mar
2012. ISSN 1976-3808. Cited on page 23.

CHEN, K. et al. A hybrid particle swarm optimizer with sine cosine acceleration
coefficients. Information Sciences, v. 422, p. 218 – 241, 2018. ISSN 0020-0255. Cited on
page 26.

CHEN, Y. et al. Particle swarm optimizer with two differential mutation. Applied Soft
Computing, v. 61, p. 314 – 330, 2017. ISSN 1568-4946. Cited on page 26.

CHEN, Y. et al. Particle swarm optimizer with crossover operation. Engineering
Applications of Artificial Intelligence, v. 70, p. 159 – 169, 2018. ISSN 0952-1976. Cited on
page 26.

CHENEY, W.; KINCAID, D. R. Linear Algebra: Theory And Applications. [S.l.]: Jones &
Bartlett Learning, 2008. ISBN 0763750204. Cited on page 113.

CHOUIKHI, N. et al. Pso-based analysis of echo state network parameters for time series
forecasting. Applied Soft Computing, v. 55, p. 211 – 225, 2017. ISSN 1568-4946. Cited on
page 42.

CLERC, M. The swarm and the queen: towards a deterministic and adaptive
particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406). [S.l.: s.n.], 1999. v. 3, p. 1957 Vol. 3. Cited 2
times on pages 28 and 36.

CLERC, M. Confinements and Biases in Particle Swarm Optimisation. 9 pages. 2006.
Cited on page 46.



Bibliography 143

CLERC, M. Randomness matters. [S.l.], 2012. 14 pages. Cited 4 times on pages 26, 34,
64, and 114.

CLERC, M. Standard particle swarm optimisation. 15 pages. 2012. Cited 6 times on
pages 31, 35, 36, 61, 80, and 82.

CLERC, M.; KENNEDY, J. The particle swarm - explosion, stability, and convergence in
a multidimensional complex space. IEEE Transactions on Evolutionary Computation, v. 6,
n. 1, p. 58–73, Feb 2002. ISSN 1089-778X. Cited 7 times on pages 24, 29, 35, 36, 46, 49,
and 73.

CUEVAS, E. et al. Circle detection using electro-magnetism optimization. Information
Sciences, v. 182, n. 1, p. 40 – 55, 2012. ISSN 0020-0255. Nature-Inspired Collective
Intelligence in Theory and Practice. Cited on page 33.

DERRAC, J. et al. A practical tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation, v. 1, n. 1, p. 3 – 18, 2011. ISSN 2210-6502. Cited 3 times on
pages 39, 122, and 124.

DORIGO, M.; MANIEZZO, V.; COLORNI, A. Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), v. 26, n. 1, p. 29–41, Feb 1996. ISSN 1083-4419. Cited on page 33.

DUAN, Y.; YING, S. A particle swarm optimization algorithm with ant search for
solving traveling salesman problem. In: 2009 International Conference on Computational
Intelligence and Security. [S.l.: s.n.], 2009. v. 2, p. 137–141. Cited on page 23.

DURO, J. A.; OLIVEIRA, J. V. de. Particle swarm optimization applied to the chess
game. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on
Computational Intelligence). [S.l.: s.n.], 2008. p. 3702–3709. ISSN 1089-778X. Cited on
page 23.

DURRETT, R. Probability: Theory and Examples. [S.l.]: Cambridge University Press, 2010.
(Cambridge Series in Statistical and Probabilistic Mathematics). ISBN 9781139491136.
Cited on page 64.

EBERHART, R. C.; KENNEDY, J. A new optimizer using particle swarm theory.
Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
p. 39–43, 1995. Cited 6 times on pages 23, 26, 28, 36, 41, and 117.

EBERHART, R. C.; SHI, Y. Comparing inertia weights and constriction factors in particle
swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation.
CEC00 (Cat. No.00TH8512). [S.l.: s.n.], 2000. v. 1, p. 84–88 vol.1. Cited 2 times on
pages 28 and 36.

EBERHART, R. C.; SHI, Y. Tracking and optimizing dynamic systems with particle
swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.01TH8546). [S.l.: s.n.], 2001. v. 1, p. 94–100 vol. 1. Cited on page 49.

ESPITIA, H. E.; SOFRONY, J. I. Statistical analysis for vortex particle swarm
optimization. Applied Soft Computing, v. 67, p. 370 – 386, 2018. ISSN 1568-4946. Cited
on page 26.



144 Bibliography

EUSUFF, M.; LANSEY, K.; PASHA, F. Shuffled frog-leaping algorithm: A memetic
meta-heuristic for discrete optimization. Engineering Optimization, Taylor and Francis
Ltd., v. 38, n. 2, p. 129–154, 3 2006. ISSN 0305-215X. Cited on page 33.

FENG, Y. et al. Chaotic inertia weight in particle swarm optimization. In: Second
International Conference on Innovative Computing, Informatio and Control (ICICIC
2007). [S.l.: s.n.], 2007. p. 475–475. Cited on page 49.

FLETCHER, R. Practical Methods of Optimization; (2Nd Ed.). New York, NY, USA:
Wiley-Interscience, 1987. ISBN 0-471-91547-5. Cited on page 53.

FRIEDMAN, M. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, Taylor & Francis,
v. 32, n. 200, p. 675–701, 1937. Cited on page 122.

GBENGA, D. E.; RAMLAN, E. I. Understanding the limitations of particle swarm
algorithm for dynamic optimization tasks: A survey towards the singularity of pso for
swarm robotic applications. ACM Comput. Surv., ACM, New York, NY, USA, v. 49, n. 1,
p. 8:1–8:25, jul. 2016. ISSN 0360-0300. Cited on page 26.

GLOVER, F. Tabu search—part i. ORSA Journal on Computing, Institute for Operations
Research and the Management Sciences (INFORMS), v. 1, n. 3, p. 190–206, aug 1989.
Cited on page 24.

GLOVER, F. Tabu search—part II. ORSA Journal on Computing, Institute for
Operations Research and the Management Sciences (INFORMS), v. 2, n. 1, p. 4–32, feb
1990. Cited on page 24.

GOLDBERG, D. E. Genetic Algorithms in Search, Optimization and Machine Learning.
1st. ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN
0201157675. Cited 2 times on pages 23 and 42.

GOU, J. et al. A novel improved particle swarm optimization algorithm based on
individual difference evolution. Applied Soft Computing, v. 57, p. 468 – 481, 2017. ISSN
1568-4946. Cited on page 26.

GRIMALDI, E. A. et al. Pso as an effective learning algorithm for neural network
applications. In: Proceedings. ICCEA 2004. 2004 3rd International Conference on
Computational Electromagnetics and Its Applications, 2004. [S.l.: s.n.], 2004. p. 557–560.
Cited on page 42.

GUDISE, V. G.; VENAYAGAMOORTHY, G. K. Comparison of particle swarm
optimization and backpropagation as training algorithms for neural networks. In: Swarm
Intelligence Symposium, 2003. SIS ’03. Proceedings of the 2003 IEEE. [S.l.: s.n.], 2003. p.
110–117. Cited on page 42.

HAN, F.; LIU, Q. A diversity-guided hybrid particle swarm optimization based on
gradient search. Neurocomputing, v. 137, p. 234 – 240, 2014. ISSN 0925-2312. Advanced
Intelligent Computing Theories and MethodologiesSelected papers from the 2012 Eighth
International Conference on Intelligent Computing (ICIC 2012). Cited 8 times on pages
25, 30, 34, 35, 36, 60, 99, and 101.



Bibliography 145

HAN, F.; LIU, Q. An improved hybrid pso based on arpso and the quasi-newton method.
In: TAN, Y. et al. (Ed.). Advances in Swarm and Computational Intelligence. Cham:
Springer International Publishing, 2015. p. 460–467. ISBN 978-3-319-20466-6. Cited on
page 34.

HANSEN, E. Numerical methods for unconstrained optimization and nonlinear equations
(j. e. dennis, jr., and robert b. schnabel). SIAM Review, Society for Industrial & Applied
Mathematics (SIAM), v. 28, n. 3, p. 417–419, sep 1986. Cited on page 52.

HANSEN, N. et al. Impacts of invariance in search: When cma-es and pso face
ill-conditioned and non-separable problems. Applied Soft Computing, v. 11, n. 8, p. 5755 –
5769, 2011. ISSN 1568-4946. Cited on page 54.

HAO, Z. F.; GUO, G. H.; HUANG, H. A particle swarm optimization algorithm with
differential evolution. In: 2007 International Conference on Machine Learning and
Cybernetics. [S.l.: s.n.], 2007. v. 2, p. 1031–1035. ISSN 2160-133X. Cited on page 23.

HARIYA, Y.; SHINDO, T.; JIN’NO, K. A novel particle swarm optimization algorithm
for non-separable and ill-conditioned problems. In: 2016 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). [S.l.: s.n.], 2016. p. 002110–002115. Cited on
page 89.

HART, W. E.; KRASNOGOR, N.; SMITH, J. E. Memetic evolutionary algorithms. In:
. Recent Advances in Memetic Algorithms. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2005. p. 3–27. ISBN 978-3-540-32363-1. Cited on page 69.

HEPPNER, F.; GRENANDER, U. A stochastic nonlinear model for coordinated bird
flocks. In: KRASNER, E. (Ed.). The ubiquity of chaos. [S.l.]: AAAS Publications, 1990. p.
233–238. Cited on page 41.

HEREFORD, J. M.; GERLACH, H. Integer-valued particle swarm optimization applied
to sudoku puzzles. In: 2008 IEEE Swarm Intelligence Symposium. [S.l.: s.n.], 2008. p. 1–7.
Cited on page 23.

HOLLANDER, M.; WOLFE, D. A.; CHICKEN, E. Nonparametric Statistical Methods.
[S.l.]: Wiley, 2013. ISBN 0470387378. Cited 3 times on pages 39, 122, and 125.

HORN, R. A.; JOHNSON, C. R. Matrix Analysis. 2nd. ed. New York, NY, USA:
Cambridge University Press, 2012. ISBN 0521548233, 9780521548236. Cited on page 79.

HORST, R.; TUY, H. Global Optimization: Deterministic Approaches. [S.l.]: Springer
Berlin Heidelberg, 1996. ISBN 9783540610380. Cited 3 times on pages 24, 51, and 66.

HOSSEINI, S.; KHALED, A. A. A survey on the imperialist competitive algorithm
metaheuristic: Implementation in engineering domain and directions for future research.
Applied Soft Computing, v. 24, p. 1078 – 1094, 2014. ISSN 1568-4946. Cited on page 33.

HU, X.; EBERHART, R. Solving constrained nonlinear optimization problems with
particle swarm optimization. In: 6th World Multiconference on Systemics, Cybernetics and
Informatics (SCI 2002. [S.l.: s.n.], 2002. p. 203–206. Cited on page 46.

HUANG, X. et al. Research on particle swarm optimization and its industrial application.
In: Third International Conference on Natural Computation (ICNC 2007). [S.l.: s.n.],
2007. v. 3, p. 725–729. ISSN 2157-9555. Cited on page 23.



146 Bibliography

INSTITUTE, A. N. S.; ELECTRICAL, I. of; ENGINEERS, E. Ieee standard for binary
floating-point arithmetic. ANSI/IEEE Std 754-1985, Mar 1985. Cited on page 65.

INSTITUTE, A. N. S.; ELECTRICAL, I. of; ENGINEERS, E. Ieee standard for
floating-point arithmetic. IEEE Std 754-2008, Aug 2008. Cited on page 65.

ISSA, M. et al. Asca-pso: Adaptive sine cosine optimization algorithm integrated with
particle swarm for pairwise local sequence alignment. Expert Systems with Applications,
v. 99, p. 56 – 70, 2018. ISSN 0957-4174. Cited on page 26.

JANSON, S.; MIDDENDORF, M. On trajectories of particles in pso. In: 2007 IEEE
Swarm Intelligence Symposium. [S.l.: s.n.], 2007. p. 150–155. Cited 2 times on pages 24
and 64.

JENSI, R.; JIJI, G. W. An enhanced particle swarm optimization with levy flight for
global optimization. Applied Soft Computing, v. 43, p. 248 – 261, 2016. ISSN 1568-4946.
Cited on page 26.

JONG, K. A. D. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Tese (Doutorado) — University of Michigan, Ann Arbor, MI, USA, 1975. AAI7609381.
Cited 2 times on pages 37 and 98.

JR., I. F. et al. A brief review of nature-inspired algorithms for optimization. CoRR,
abs/1307.4186, 2013. Cited on page 33.

JUANG, C.-F. A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), v. 34, n. 2, p. 997–1006, April 2004. ISSN 1083-4419. Cited on page 23.

KARABOGA, D. An idea based on honey bee swarm for numerical optimization. [S.l.],
2005. Cited on page 33.

KENNEDY, J. The particle swarm: social adaptation of knowledge. In: Evolutionary
Computation, 1997., IEEE International Conference on. [S.l.: s.n.], 1997. p. 303–308.
Cited 5 times on pages 23, 26, 50, 73, and 88.

KENNEDY, J. The particle swarm: social adaptation of knowledge. In: Evolutionary
Computation, 1997., IEEE International Conference on. [S.l.: s.n.], 1997. p. 303–308.
Cited 2 times on pages 28 and 36.

KENNEDY, J. Personal Communication with Dr. W. Spears. 2007. Cited on page 81.

KENNEDY, J.; EBERHART, R. C. Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks. [S.l.: s.n.], 1995. p. 1942–1948. Cited
7 times on pages 23, 26, 28, 36, 41, 42, and 117.

KHALIFA, M. H. et al. Particle swarm optimization for deep learning of convolution
neural network. In: 2017 Sudan Conference on Computer Science and Information
Technology (SCCSIT). [S.l.: s.n.], 2017. p. 1–5. Cited on page 29.

KHAN, A.; NIEMANN-DELIUS, C. Application of particle swarm optimization to the
open pit mine scheduling problem. In: NIEMANN-DELIUS, C. (Ed.). Proceedings of the
12th International Symposium Continuous Surface Mining - Aachen 2014. Cham: Springer
International Publishing, 2015. p. 195–212. ISBN 978-3-319-12301-1. Cited on page 23.



Bibliography 147

KRISHNANAND, K. N.; GHOSE, D. Detection of multiple source locations using a
glowworm metaphor with applications to collective robotics. In: Proceedings 2005 IEEE
Swarm Intelligence Symposium, 2005. SIS 2005. [S.l.: s.n.], 2005. p. 84–91. Cited on page
33.

KUMARI, R. V. S. L. et al. Optimal sizing of distributed generation using particle
swarm optimization. In: 2017 International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT). [S.l.: s.n.], 2017. p. 499–505. Cited
on page 26.

LI, S.-F.; CHENG, C.-Y. Particle swarm optimization with fitness adjustment parameters.
Computers & Industrial Engineering, v. 113, p. 831 – 841, 2017. ISSN 0360-8352. Cited
on page 26.

LIANG, J. J. et al. Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions. IEEE Transactions on Evolutionary Computation,
v. 10, n. 3, p. 281–295, June 2006. ISSN 1089-778X. Cited on page 26.

LIU, Q.; HAN, F. A hybrid attractive and repulsive particle swarm optimization based
on gradient search. In: HUANG, D.-S. et al. (Ed.). Intelligent Computing Theories and
Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. p. 155–162. ISBN
978-3-642-39482-9. Cited on page 34.

LOCATELLI, M. A note on the griewank test function. Journal of Global Optimization,
v. 25, n. 2, p. 169–174, 2003. ISSN 1573-2916. Cited on page 103.

LU, Y. et al. Improved particle swarm optimization algorithm and its application in text
feature selection. Applied Soft Computing, v. 35, p. 629 – 636, 2015. ISSN 1568-4946.
Cited on page 42.

LYNN, N.; ALI, M. Z.; SUGANTHAN, P. N. Population topologies for particle swarm
optimization and differential evolution. Swarm and Evolutionary Computation, v. 39, p.
24 – 35, 2018. ISSN 2210-6502. Cited on page 26.

LYNN, N.; SUGANTHAN, P. N. Ensemble particle swarm optimizer. Applied Soft
Computing, v. 55, p. 533 – 548, 2017. ISSN 1568-4946. Cited on page 26.

MARINI, F.; WALCZAK, B. Particle swarm optimization (pso). a tutorial. Chemometrics
and Intelligent Laboratory Systems, v. 149, Part B, p. 153 – 165, 2015. ISSN 0169-7439.
Cited on page 26.

MATSUMOTO, M.; NISHIMURA, T. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul., ACM, New York, NY, USA, v. 8, n. 1, p. 3–30, jan. 1998. ISSN 1049-3301. Cited
on page 65.

MOLER, C.; LOAN, C. V. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review, Society for Industrial & Applied Mathematics
(SIAM), v. 45, n. 1, p. 3–49, jan 2003. Cited on page 62.

MONSON, C. K.; SEPPI, K. D. Exposing origin-seeking bias in pso. In: Proceedings of
the 7th Annual Conference on Genetic and Evolutionary Computation. New York, NY,
USA: ACM, 2005. (GECCO ’05), p. 241–248. ISBN 1-59593-010-8. Cited on page 61.



148 Bibliography

MORAGLIO, A.; TOGELIUS, J. Geometric particle swarm optimization for the sudoku
puzzle. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation. New York, NY, USA: ACM, 2007. (GECCO ’07), p. 118–125. ISBN
978-1-59593-697-4. Cited on page 23.

MOSCATO, P. On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Pasadena, CA, 1989. Cited on page 69.

NAKAGAWA, N.; ISHIGAME, A.; YASUDA, K. Particle swarm optimization with
approximate gradient. IEEJ Transactions on Electrical and Electronic Engineering,
Wiley Subscription Services, Inc., A Wiley Company, v. 3, n. 5, p. 590–592, 2008. ISSN
1931-4981. Cited on page 49.

NOEL, M. M. A new gradient based particle swarm optimization algorithm for accurate
computation of global minimum. Applied Soft Computing, v. 12, n. 1, p. 353 – 359, 2012.
ISSN 1568-4946. Cited 8 times on pages 25, 26, 30, 34, 36, 59, 99, and 101.

NOEL, M. M.; JANNETT, T. C. Simulation of a new hybrid particle swarm optimization
algorithm. In: Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings
of the. [S.l.: s.n.], 2004. p. 150–153. ISSN 0094-2898. Cited 2 times on pages 34 and 101.

OKULEWICZ, M.; MAńDZIUK, J. The impact of particular components of the pso-based
algorithm solving the dynamic vehicle routing problem. Applied Soft Computing, v. 58, p.
586 – 604, 2017. ISSN 1568-4946. Cited on page 42.

OZCAN, E. et al. Particle swarm optimization: Surfing the waves. In: Proceedings of the
Congress on Evolutionary Computation. [S.l.]: IEEE Press, 1999. p. 6–9. Cited 2 times on
pages 23 and 35.

OZCAN, E.; MOHAN, C. Analysis of a simple particle swarm optimization system. In:
. Intelligent Engineering Systems Through Artificial Neural Networks. [S.l.: s.n.],

1998. v. 1998, p. 253–258. Cited on page 23.

POLI, R. Mean and variance of the sampling distribution of particle swarm optimizers
during stagnation. IEEE Transactions on Evolutionary Computation, v. 13, n. 4, p.
712–721, Aug 2009. ISSN 1089-778X. Cited on page 24.

QIAN, X. L. L. J. S. X. An optimizing method based on autonomous animats: Fish-swarm
algorithm. Systems Engineering - Theory and Practice, Systems Engineering - Theory and
Practice, v. 22, n. 11, p. 32, 2002. Cited on page 33.

RABANAL, P.; RODRÍGUEZ, I.; RUBIO, F. Using river formation dynamics to design
heuristic algorithms. In: AKL, S. G. et al. (Ed.). Unconventional Computation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007. p. 163–177. ISBN 978-3-540-73554-0. Cited
on page 33.

RASHEDI, E.; NEZAMABADI-POUR, H.; SARYAZDI, S. Gsa: A gravitational search
algorithm. Inf. Sci., Elsevier Science Inc., New York, NY, USA, v. 179, n. 13, p. 2232–2248,
jun. 2009. ISSN 0020-0255. Cited on page 33.

RATNAWEERA, A.; HALGAMUGE, S. K.; WATSON, H. C. Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions
on Evolutionary Computation, v. 8, n. 3, p. 240–255, June 2004. ISSN 1089-778X. Cited
5 times on pages 28, 35, 48, 76, and 117.



Bibliography 149

RAUNIYAR, A.; ENGELSTAD, P.; MOEN, J. A new distributed localization algorithm
using social learning based particle swarm optimization for internet of things. In: 2018
IEEE 87th Vehicular Technology Conference (VTC Spring). [S.l.: s.n.], 2018. p. 1–7. ISSN
2577-2465. Cited on page 29.

REYNOLDS, C. W. Flocks, herds and schools: A distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques. New York, NY, USA: ACM, 1987. (SIGGRAPH ’87), p. 25–34. ISBN
0-89791-227-6. Cited on page 41.

REYNOLDS, C. W. Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput. Graph., ACM, New York, NY, USA, v. 21, n. 4, p. 25–34, ago. 1987.
ISSN 0097-8930. Cited on page 41.

ROBATI, A. et al. Balanced fuzzy particle swarm optimization. Applied Mathematical
Modelling, v. 36, n. 5, p. 2169 – 2177, 2012. ISSN 0307-904X. Cited on page 26.

SAAD, N. H.; EL-SATTAR, A. A.; MANSOUR, A. E.-A. M. A novel control strategy
for grid connected hybrid renewable energy systems using improved particle swarm
optimization. Ain Shams Engineering Journal, v. 9, n. 4, p. 2195 – 2214, 2018. ISSN
2090-4479. Cited on page 29.

SADOLLAH, A. et al. Mine blast algorithm: A new population based algorithm for
solving constrained engineering optimization problems. Applied Soft Computing, v. 13,
n. 5, p. 2592 – 2612, 2013. ISSN 1568-4946. Cited on page 33.

SALOMON, R. Re-evaluating genetic algorithm performance under coordinate rotation
of benchmark functions. a survey of some theoretical and practical aspects of genetic
algorithms. Biosystems, v. 39, n. 3, p. 263 – 278, 1996. ISSN 0303-2647. Cited on page 64.

SANTOS, A. et al. A global expectation-maximization based on memetic swarm
optimization for structural damage detection. Structural Health Monitoring, v. 15, n. 5, p.
610–625, 2016. Cited on page 23.

SANTOS, R. et al. A semi-autonomous particle swarm optimizer based on gradient
information and diversity control for global optimization. Applied Soft Computing, v. 69,
p. 330 – 343, 2018. ISSN 1568-4946. Cited 2 times on pages 36 and 69.

SCHMITT, M.; WANKA, R. Particles prefer walking along the axes. In: Proceeding of
the fifteenth annual conference companion on Genetic and evolutionary computation
conference companion - GECCO '13 Companion. [S.l.]: ACM Press, 2013. Cited on page
24.

SCHMITT, M.; WANKA, R. Particles prefer walking along the axes: Experimental
insights into the behavior of a particle swarm. CoRR, abs/1303.6145, 2013. Cited on
page 24.

SHAMI, T. M.; GRACE, D.; BURR, A. Load balancing and control using particle swarm
optimisation in 5g heterogeneous networks. In: 2018 European Conference on Networks
and Communications (EuCNC). [S.l.: s.n.], 2018. p. 1–9. ISSN 2575-4912. Cited on page
29.



150 Bibliography

SHEHAB, M.; KHADER, A. T.; AL-BETAR, M. A. A survey on applications and
variants of the cuckoo search algorithm. Applied Soft Computing, 2017. ISSN 1568-4946.
Cited on page 33.

SHI, Y.; EBERHART, R. A modified particle swarm optimizer. In: 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No.98TH8360). [S.l.: s.n.], 1998. p. 69–73.
Cited 9 times on pages 26, 28, 36, 47, 48, 60, 76, 79, and 117.

SHI, Y.; EBERHART, R. C. Parameter selection in particle swarm optimization. In:
PORTO, V. W. et al. (Ed.). Evolutionary Programming VII. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998. p. 591–600. ISBN 978-3-540-68515-9. Cited 3 times on pages 26,
48, and 49.

SHI, Y.; EBERHART, R. C. Empirical study of particle swarm optimization. In:
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406). [S.l.: s.n.], 1999. v. 3, p. 1950 Vol. 3. Cited 7 times on pages 26, 28, 35, 36,
48, 49, and 117.

SNYMAN, J. A. Practical mathematical optimization : an introduction to basic
optimization theory and classical and new gradient-based algorithms. [S.l.]: Springer-Verlag,
2005. Cited on page 55.

SÖRENSEN, K. Metaheuristics—the metaphor exposed. International Transactions in
Operational Research, v. 22, n. 1, p. 3–18, 2015. ISSN 1475-3995. Cited on page 33.

SPEARS, W. M.; GREEN, D. T.; SPEARS, D. F. Biases in particle swarm optimization.
Int. J. Swarm. Intell. Res., IGI Global, Hershey, PA, USA, v. 1, n. 2, p. 34–57, abr. 2010.
ISSN 1947-9263. Cited 6 times on pages 24, 31, 61, 64, 81, and 89.

SUGANTHAN, P. N. Particle swarm optimiser with neighbourhood operator. In:
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406). [S.l.: s.n.], 1999. v. 3, p. 1962 Vol. 3. Cited 2 times on pages 48 and 49.

TEWOLDE, G. S.; HANNA, D. M.; HASKELL, R. E. Enhancing performance of pso with
automatic parameter tuning technique. In: 2009 IEEE Swarm Intelligence Symposium.
[S.l.: s.n.], 2009. p. 67–73. Cited on page 26.

THABIT, S.; MOHADES, A. Multi-robot path planning based on multi-objective particle
swarm optimization. IEEE Access, v. 7, p. 2138–2147, Jan 2019. ISSN 2169-3536. Cited
on page 29.

TIAN, D.; SHI, Z. Mpso: Modified particle swarm optimization and its applications.
Swarm and Evolutionary Computation, 2018. ISSN 2210-6502. Cited on page 26.

VESTERSTRØM, J.; RIGET, J. A diversity-guided particle swarm optimizer - the arpso.
EVALife Technical Report, n. 2002-02, 2002. Cited 7 times on pages 25, 30, 36, 58, 75, 99,
and 101.

VILOVIĆ, I.; BURUM, N.; MILIĆ, D. Using particle swarm optimization in training
neural network for indoor field strength prediction. In: 2009 International Symposium
ELMAR. [S.l.: s.n.], 2009. p. 275–278. ISSN 1334-2630. Cited on page 23.



Bibliography 151

WANG, Y. R.; LIN, H. L.; YANG, L. Swarm refinement pso for solving n-queens problem.
In: 2012 Third International Conference on Innovations in Bio-Inspired Computing and
Applications. [S.l.: s.n.], 2012. p. 29–33. Cited on page 23.

WEDYAN, A.; WHALLEY, J.; NARAYANAN, A. Hydrological cycle algorithm for
continuous optimization problems. Journal of Optimization, Hindawi Limited, v. 2017, p.
1–25, 2017. Cited on page 33.

WILKE, D. N.; KOK, S.; GROENWOLD, A. A. Comparison of linear and classical
velocity update rules in particle swarm optimization: notes on diversity. International
Journal for Numerical Methods in Engineering, v. 70, n. 8, p. 962–984, 2007. Cited 5
times on pages 26, 31, 62, 63, and 89.

WILKE, D. N.; KOK, S.; GROENWOLD, A. A. Comparison of linear and classical
velocity update rules in particle swarm optimization: notes on scale and frame invariance.
International Journal for Numerical Methods in Engineering, v. 70, n. 8, p. 985–1008,
2007. Cited 11 times on pages 26, 31, 32, 35, 36, 53, 55, 62, 63, 89, and 127.

WILSON, E. Sociobiology: The New Synthesis. [S.l.]: Belknap Press of Harvard University
Press, 1975. ISBN 9780674816213. Cited on page 41.

WILSON, E. Sociobiology: The New Synthesis. [S.l.]: Belknap Press of Harvard University
Press, 2000. ISBN 9780674000896. Cited on page 41.

WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, v. 1, n. 1, p. 67–82, Apr 1997. ISSN
1089-778X. Cited on page 109.

XU, G.; YU, G. On convergence analysis of particle swarm optimization algorithm.
Journal of Computational and Applied Mathematics, v. 333, p. 65 – 73, 2018. ISSN
0377-0427. Cited on page 26.

XU, S.-H. et al. A combination of genetic algorithm and particle swarm optimization
for vehicle routing problem with time windows. Sensors, MDPI AG, v. 15, n. 9, p.
21033–21053, aug 2015. Cited on page 23.

YAMAGUCHI, T.; YASUDA, K. Adaptive particle swarm optimization; self-coordinating
mechanism with updating information. In: 2006 IEEE International Conference on
Systems, Man and Cybernetics. [S.l.: s.n.], 2006. v. 3, p. 2303–2308. ISSN 1062-922X.
Cited 2 times on pages 28 and 36.

YANG, X.-S. Nature-Inspired Metaheuristic Algorithms. [S.l.]: Luniver Press, 2008. ISBN
1905986106, 9781905986101. Cited on page 33.

YANG, X.-S. Firefly algorithms for multimodal optimization. In: WATANABE, O.;
ZEUGMANN, T. (Ed.). Stochastic Algorithms: Foundations and Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009. p. 169–178. ISBN 978-3-642-04944-6. Cited
on page 33.

YANG, X.-S. Flower pollination algorithm for global optimization. In: DURAND-LOSE,
J.; JONOSKA, N. (Ed.). Unconventional Computation and Natural Computation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012. p. 240–249. ISBN 978-3-642-32894-7. Cited
on page 33.



152 Bibliography

YANG, X.-S.; HE, X. Bat algorithm: Literature review and applications. Int. J.
Bio-Inspired Comput., Inderscience Publishers, Inderscience Publishers, Geneva,
SWITZERLAND, v. 5, n. 3, p. 141–149, jul. 2013. ISSN 1758-0366. Cited on page 33.

YU, J. J.; LI, V. O. A social spider algorithm for global optimization. Applied Soft
Computing, v. 30, p. 614 – 627, 2015. ISSN 1568-4946. Cited on page 33.

YU, K.; WANG, X.; WANG, Z. Multiple learning particle swarm optimization with space
transformation perturbation and its application in ethylene cracking furnace optimization.
Knowledge-Based Systems, v. 96, p. 156 – 170, 2016. ISSN 0950-7051. Cited on page 26.

ZAHARA, E.; KAO, Y. T.; LIU, C. H. Gradient enhanced particle swarm optimization
for unconstrained problems. In: 2009 Fourth International Conference on Innovative
Computing, Information and Control (ICICIC). [S.l.: s.n.], 2009. p. 893–896. Cited on
page 34.

ZAHARA, E.; KAO, Y. T.; SU, J. R. Enhancing particle swarm optimization with
gradient information. In: 2009 Fifth International Conference on Natural Computation.
[S.l.: s.n.], 2009. v. 3, p. 251–254. ISSN 2157-9555. Cited on page 34.

ZAMBRANO-BIGIARINI, M.; CLERC, M.; ROJAS-MUJICA, R. Standard particle
swarm optimisation 2011 at CEC-2013: A baseline for future PSO improvements. In:
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013, Cancun,
Mexico, June 20-23, 2013. [S.l.: s.n.], 2013. p. 2337–2344. Cited on page 61.

ZAMBRANO-BIGIARINI, M.; CLERC, M.; ROJAS, R. Standard particle swarm
optimisation 2011 at cec-2013: A baseline for future pso improvements. In: 2013 IEEE
Congress on Evolutionary Computation. [S.l.: s.n.], 2013. p. 2337–2344. ISSN 1089-778X.
Cited on page 32.

ZANDI, Z.; AFJEI, E.; SEDIGHIZADEH, M. Reactive power dispatch using big
bang-big crunch optimization algorithm for voltage stability enhancement. In: 2012 IEEE
International Conference on Power and Energy (PECon). [S.l.: s.n.], 2012. p. 239–244.
Cited on page 33.

ZAR, J. H. Biostatistical Analysis (5th Edition). Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 2007. ISBN 0131008463. Cited 3 times on pages 122, 123, and 125.

ZHAN, Z. h. et al. Adaptive control of acceleration coefficients for particle swarm
optimization based on clustering analysis. In: 2007 IEEE Congress on Evolutionary
Computation. [S.l.: s.n.], 2007. p. 3276–3282. ISSN 1089-778X. Cited 2 times on pages 28
and 36.

ZHAN, Z. H. et al. Adaptive particle swarm optimization. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), v. 39, n. 6, p. 1362–1381, Dec 2009. ISSN
1083-4419. Cited 2 times on pages 28 and 36.

ZHAN, Z. H. et al. Orthogonal learning particle swarm optimization. IEEE Transactions
on Evolutionary Computation, v. 15, n. 6, p. 832–847, Dec 2011. ISSN 1089-778X. Cited
on page 26.

ZHANG, Q. et al. Vector coevolving particle swarm optimization algorithm. Information
Sciences, v. 394-395, p. 273 – 298, 2017. ISSN 0020-0255. Cited on page 26.


	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Illustrations
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Thesis contributions
	A semi-autonomous particle swarm optimizer
	An empirical analysis of classical PSO versions
	ISAPSO algorithm: a rotationally invariant PSO version

	Contextualization
	Related works
	Motivation
	Justification
	Objectives
	Methodology
	Thesis organization

	Theoretical background
	The classical particle swarm optimization
	Information exchange among particles
	Bound handling
	Velocity clamping
	Improvements on particle swarm optimization
	Inertia weight
	Dynamic adjustments for inertia weight
	Constriction factor
	PSO models of velocity equation

	Gradient descent
	Newton's and Quasi-Newton methods
	Scale, translation and rotation (in)variance
	Rotationally invariant PSO version
	Rotationally variant PSO version

	Versions of particle swarm optimization algorithm
	Attractive and repulsive PSO – ARPSO and ARPSO*
	Gradient-based PSO – GPSO
	Diversity-guided hybrid PSO based on gradient search – DGHPSOGS
	Standard PSO – SPSO
	Wilke PSO – WPSO
	Bonyadi PSO – BPSO

	Clerc's rules
	General formulation of optimization problems

	Enhancements for PSO: SAPSO, rotation and information exchange, and ISAPSO
	SAPSO: semi-autonomous particle swarm optimizer
	A short self-contained example of the SAPSO algorithm
	The velocity update equation
	The algorithmic steps
	Exploration versus exploitation: a contradictory trade-off

	Rotation and information exchange
	Graphical demonstration of the instantaneous search domain
	Empirical average angle analysis
	A method to define the number of executions

	ISAPSO: Invariant SAPSO
	The velocity update equation
	Relations between SAPSO and ISAPSO algorithms
	Mathematical proof of rotationally invariant algorithm
	Case 1: dir = 1 and Iit = 1
	Case 2: dir = 1 and Iit = 0
	Case 3: dir = -1 and Iit = 1
	Case 4: dir = -1 and Iit = 0

	Number of executions based on the proposed method


	Experimental results and discussions
	Results: SAPSO algorithm
	De Jong's benchmark problems
	Toward the global minimum
	Higher dimensional test functions
	Computational time analysis and algorithm reliability
	Diversity control analysis

	Results: rotation and information exchange
	CEC 2017 benchmark problems
	Toward the minimum error rate
	Friedman's and Wilcoxon's statistical tests with k k and pair-wise comparisons

	Results: ISAPSO algorithm
	Numerical simulation on benchmark functions
	Friedman's statistical test with 1 k comparisons


	Conclusion
	Future research

	Average angle analysis
	PSO parameters
	Publication
	Bibliography

